Business Intelligence through Machine Learning from Satellite Remote Sensing Data

Several cities have been greatly affected by economic crisis, unregulated gentrification, and the pandemic, resulting in increased vacancy rates. Abandoned buildings have various negative implications on their neighborhoods, including an increased chance of fire and crime and a drastic reduction in...

Full description

Bibliographic Details
Main Authors: Christos Kyriakos, Manolis Vavalis
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Future Internet
Subjects:
Online Access:https://www.mdpi.com/1999-5903/15/11/355
Description
Summary:Several cities have been greatly affected by economic crisis, unregulated gentrification, and the pandemic, resulting in increased vacancy rates. Abandoned buildings have various negative implications on their neighborhoods, including an increased chance of fire and crime and a drastic reduction in their monetary value. This paper focuses on the use of satellite data and machine learning to provide insights for businesses and policymakers within Greece and beyond. Our objective is two-fold: to provide a comprehensive literature review on recent results concerning the opportunities offered by satellite images for business intelligence and to design and implement an open-source software system for the detection of abandoned or disused buildings based on nighttime lights and built-up area indices. Our preliminary experimentation provides promising results that can be used for location intelligence and beyond.
ISSN:1999-5903