Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses
The abundant and widespread unicellular cyanobacteria <i>Synechococcus</i> plays an important role in contributing to global phytoplankton primary production. In the present study, two novel cyanomyoviruses, S-N03 and S-H34 that infected <i>Synechococcus</i> MW02, were isolat...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Viruses |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4915/12/8/800 |
_version_ | 1797561274937114624 |
---|---|
author | Tong Jiang Cui Guo Min Wang Meiwen Wang Xinran Zhang Yundan Liu Yantao Liang Yong Jiang Hui He Hongbing Shao Andrew McMinn |
author_facet | Tong Jiang Cui Guo Min Wang Meiwen Wang Xinran Zhang Yundan Liu Yantao Liang Yong Jiang Hui He Hongbing Shao Andrew McMinn |
author_sort | Tong Jiang |
collection | DOAJ |
description | The abundant and widespread unicellular cyanobacteria <i>Synechococcus</i> plays an important role in contributing to global phytoplankton primary production. In the present study, two novel cyanomyoviruses, S-N03 and S-H34 that infected <i>Synechococcus</i> MW02, were isolated from the coastal waters of the Yellow Sea. S-N03 contained a 167,069-bp genome comprising double-stranded DNA with a G + C content of 50.1%, 247 potential open reading frames and 1 tRNA; S-H34 contained a 167,040-bp genome with a G + C content of 50.1%, 246 potential open reading frames and 5 tRNAs. These two cyanophages contain fewer auxiliary metabolic genes (AMGs) than other previously isolated cyanophages. S-H34 in particular, is currently the only known cyanomyovirus that does not contain any AMGs related to photosynthesis. The absence of such common AMGs in S-N03 and S-H34, their distinct evolutionary history and ecological features imply that the energy for phage production might be obtained from other sources rather than being strictly dependent on the maintenance of photochemical ATP under high light. Phylogenetic analysis showed that the two isolated cyanophages clustered together and had a close relationship with two other cyanophages of low AMG content. Comparative genomic analysis, habitats and hosts across 81 representative cyanomyovirus showed that cyanomyovirus with less AMGs content all belonged to <i>Synechococcus</i> phages isolated from eutrophic waters. The relatively small genome size and high G + C content may also relate to the lower AMG content, as suggested by the significant correlation between the number of AMGs and G + C%. Therefore, the lower content of AMG in S-N03 and S-H34 might be a result of viral evolution that was likely shaped by habitat, host, and their genomic context. The genomic content of AMGs in cyanophages may have adaptive significance and provide clues to their evolution. |
first_indexed | 2024-03-10T18:12:41Z |
format | Article |
id | doaj.art-1190d79fe29e4ae89b95720d99741312 |
institution | Directory Open Access Journal |
issn | 1999-4915 |
language | English |
last_indexed | 2024-03-10T18:12:41Z |
publishDate | 2020-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Viruses |
spelling | doaj.art-1190d79fe29e4ae89b95720d997413122023-11-20T07:57:39ZengMDPI AGViruses1999-49152020-07-0112880010.3390/v12080800Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of CyanomyovirusesTong Jiang0Cui Guo1Min Wang2Meiwen Wang3Xinran Zhang4Yundan Liu5Yantao Liang6Yong Jiang7Hui He8Hongbing Shao9Andrew McMinn10College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaCollege of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaThe abundant and widespread unicellular cyanobacteria <i>Synechococcus</i> plays an important role in contributing to global phytoplankton primary production. In the present study, two novel cyanomyoviruses, S-N03 and S-H34 that infected <i>Synechococcus</i> MW02, were isolated from the coastal waters of the Yellow Sea. S-N03 contained a 167,069-bp genome comprising double-stranded DNA with a G + C content of 50.1%, 247 potential open reading frames and 1 tRNA; S-H34 contained a 167,040-bp genome with a G + C content of 50.1%, 246 potential open reading frames and 5 tRNAs. These two cyanophages contain fewer auxiliary metabolic genes (AMGs) than other previously isolated cyanophages. S-H34 in particular, is currently the only known cyanomyovirus that does not contain any AMGs related to photosynthesis. The absence of such common AMGs in S-N03 and S-H34, their distinct evolutionary history and ecological features imply that the energy for phage production might be obtained from other sources rather than being strictly dependent on the maintenance of photochemical ATP under high light. Phylogenetic analysis showed that the two isolated cyanophages clustered together and had a close relationship with two other cyanophages of low AMG content. Comparative genomic analysis, habitats and hosts across 81 representative cyanomyovirus showed that cyanomyovirus with less AMGs content all belonged to <i>Synechococcus</i> phages isolated from eutrophic waters. The relatively small genome size and high G + C content may also relate to the lower AMG content, as suggested by the significant correlation between the number of AMGs and G + C%. Therefore, the lower content of AMG in S-N03 and S-H34 might be a result of viral evolution that was likely shaped by habitat, host, and their genomic context. The genomic content of AMGs in cyanophages may have adaptive significance and provide clues to their evolution.https://www.mdpi.com/1999-4915/12/8/800cyanophage<i>Myoviridae</i>AMGsgenomephotosynthesis |
spellingShingle | Tong Jiang Cui Guo Min Wang Meiwen Wang Xinran Zhang Yundan Liu Yantao Liang Yong Jiang Hui He Hongbing Shao Andrew McMinn Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses Viruses cyanophage <i>Myoviridae</i> AMGs genome photosynthesis |
title | Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses |
title_full | Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses |
title_fullStr | Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses |
title_full_unstemmed | Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses |
title_short | Genome Analysis of Two Novel <i>Synechococcus</i> Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses |
title_sort | genome analysis of two novel i synechococcus i phages that lack common auxiliary metabolic genes possible reasons and ecological insights by comparative analysis of cyanomyoviruses |
topic | cyanophage <i>Myoviridae</i> AMGs genome photosynthesis |
url | https://www.mdpi.com/1999-4915/12/8/800 |
work_keys_str_mv | AT tongjiang genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT cuiguo genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT minwang genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT meiwenwang genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT xinranzhang genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT yundanliu genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT yantaoliang genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT yongjiang genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT huihe genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT hongbingshao genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses AT andrewmcminn genomeanalysisoftwonovelisynechococcusiphagesthatlackcommonauxiliarymetabolicgenespossiblereasonsandecologicalinsightsbycomparativeanalysisofcyanomyoviruses |