Estimation of classical parameters via continuous probing of complementary quantum observables
We discuss how continuous probing of a quantum system allows estimation of unknown classical parameters embodied in the Hamiltonian of the system. We generalize the stochastic master equation associated with continuous observation processes to a Bayesian filter equation for the probability distribut...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2013-01-01
|
Series: | New Journal of Physics |
Online Access: | https://doi.org/10.1088/1367-2630/15/12/125002 |
Summary: | We discuss how continuous probing of a quantum system allows estimation of unknown classical parameters embodied in the Hamiltonian of the system. We generalize the stochastic master equation associated with continuous observation processes to a Bayesian filter equation for the probability distribution of the desired parameters, and we illustrate its application by estimating the direction of a magnetic field. In our example, the field causes a ground state spin precession in a two-level atom which is detected by the polarization rotation of off-resonant optical probes, interacting with the atomic spin components. |
---|---|
ISSN: | 1367-2630 |