PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHY
An acoustic signature generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense temperature and wind profiles within a volume of atmosphere up to an altitude of 120 m and over an area of 300 m × 300&thin...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-06-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/283/2019/isprs-archives-XLII-2-W13-283-2019.pdf |
_version_ | 1818248453669519360 |
---|---|
author | A. Finn K. Rogers J. Meade J. Skinner A. Zargarian |
author_facet | A. Finn K. Rogers J. Meade J. Skinner A. Zargarian |
author_sort | A. Finn |
collection | DOAJ |
description | An acoustic signature generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense temperature and wind profiles within a volume of atmosphere up to an altitude of 120 m and over an area of 300 m × 300 m. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into three-dimensional profiles of virtual temperature and wind velocity, which enables the atmosphere to be visualised and monitored over time. The wind and temperature estimates obtained using this method are compared to independent measurements taken by a co-located mid-range ZephIR LIDAR and sensors onboard the aircraft. These comparisons show correspondences to better than 0.5 °C and 0.3 m/s for temperature and wind velocity, respectively. |
first_indexed | 2024-12-12T15:20:51Z |
format | Article |
id | doaj.art-11bdcac6c7d542c2a776c1498d82aba6 |
institution | Directory Open Access Journal |
issn | 1682-1750 2194-9034 |
language | English |
last_indexed | 2024-12-12T15:20:51Z |
publishDate | 2019-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
spelling | doaj.art-11bdcac6c7d542c2a776c1498d82aba62022-12-22T00:20:23ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342019-06-01XLII-2-W1328328710.5194/isprs-archives-XLII-2-W13-283-2019PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHYA. Finn0K. Rogers1J. Meade2J. Skinner3A. Zargarian4School of Engineering, University of South Australia, Mawson Lakes, Australia, SA 5095School of Engineering, University of South Australia, Mawson Lakes, Australia, SA 5095School of Engineering, University of South Australia, Mawson Lakes, Australia, SA 5095School of Engineering, University of South Australia, Mawson Lakes, Australia, SA 5095School of Engineering, University of South Australia, Mawson Lakes, Australia, SA 5095An acoustic signature generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense temperature and wind profiles within a volume of atmosphere up to an altitude of 120 m and over an area of 300 m × 300 m. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into three-dimensional profiles of virtual temperature and wind velocity, which enables the atmosphere to be visualised and monitored over time. The wind and temperature estimates obtained using this method are compared to independent measurements taken by a co-located mid-range ZephIR LIDAR and sensors onboard the aircraft. These comparisons show correspondences to better than 0.5 °C and 0.3 m/s for temperature and wind velocity, respectively.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/283/2019/isprs-archives-XLII-2-W13-283-2019.pdf |
spellingShingle | A. Finn K. Rogers J. Meade J. Skinner A. Zargarian PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHY The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
title | PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHY |
title_full | PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHY |
title_fullStr | PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHY |
title_full_unstemmed | PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHY |
title_short | PRELIMINARY EVALUATION OF ATMOSPHERIC TEMPERATURE AND WIND PROFILES OBTAINED USING UNMANNED AERIAL VEHICLE BASED ACOUSTIC TOMOGRAPHY |
title_sort | preliminary evaluation of atmospheric temperature and wind profiles obtained using unmanned aerial vehicle based acoustic tomography |
url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/283/2019/isprs-archives-XLII-2-W13-283-2019.pdf |
work_keys_str_mv | AT afinn preliminaryevaluationofatmospherictemperatureandwindprofilesobtainedusingunmannedaerialvehiclebasedacoustictomography AT krogers preliminaryevaluationofatmospherictemperatureandwindprofilesobtainedusingunmannedaerialvehiclebasedacoustictomography AT jmeade preliminaryevaluationofatmospherictemperatureandwindprofilesobtainedusingunmannedaerialvehiclebasedacoustictomography AT jskinner preliminaryevaluationofatmospherictemperatureandwindprofilesobtainedusingunmannedaerialvehiclebasedacoustictomography AT azargarian preliminaryevaluationofatmospherictemperatureandwindprofilesobtainedusingunmannedaerialvehiclebasedacoustictomography |