Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems

This review paper reports the prerequisites of a monolithic integrated terahertz (THz) technology capable of meeting the network capacity requirements of beyond-5G wireless communications system (WCS). Keeping in mind that the terahertz signal generation for the beyond-5G networks relies on the tech...

Full description

Bibliographic Details
Main Authors: Chhandak Mukherjee, Marina Deng, Virginie Nodjiadjim, Muriel Riet, Colin Mismer, Djeber Guendouz, Christophe Caillaud, Hervé Bertin, Nicolas Vaissiere, Mathieu Luisier, Xin Wen, Magali De Matos, Patrick Mounaix, Cristell Maneux
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/5/2393
_version_ 1797412344594169856
author Chhandak Mukherjee
Marina Deng
Virginie Nodjiadjim
Muriel Riet
Colin Mismer
Djeber Guendouz
Christophe Caillaud
Hervé Bertin
Nicolas Vaissiere
Mathieu Luisier
Xin Wen
Magali De Matos
Patrick Mounaix
Cristell Maneux
author_facet Chhandak Mukherjee
Marina Deng
Virginie Nodjiadjim
Muriel Riet
Colin Mismer
Djeber Guendouz
Christophe Caillaud
Hervé Bertin
Nicolas Vaissiere
Mathieu Luisier
Xin Wen
Magali De Matos
Patrick Mounaix
Cristell Maneux
author_sort Chhandak Mukherjee
collection DOAJ
description This review paper reports the prerequisites of a monolithic integrated terahertz (THz) technology capable of meeting the network capacity requirements of beyond-5G wireless communications system (WCS). Keeping in mind that the terahertz signal generation for the beyond-5G networks relies on the technology power loss management, we propose a single computationally efficient software design tool featuring cutting-edge optical devices and high speed III–V electronics for the design of optoelectronic integrated circuits (OEICs) monolithically integrated on a single Indium-Phosphide (InP) die. Through the implementation of accurate and SPICE (Simulation Program with Integrated Circuit Emphasis)-compatible compact models of uni-traveling carrier photodiodes (UTC-PDs) and InP double heterojunction bipolar transistors (DHBTs), we demonstrated that the next generation of THz technologies for beyond-5G networks requires (i) a multi-physical understanding of their operation described through electrical, photonic and thermal equations, (ii) dedicated test structures for characterization in the frequency range higher than 110 GHz, (iii) a dedicated parameter extraction procedure, along with (iv) a circuit reliability assessment methodology. Developed on the research and development activities achieved in the past two decades, we detailed each part of the multiphysics design optimization approach while ensuring technology power loss management through a holistic procedure compatible with existing software tools and design flow for the timely and cost-effective achievement of THz OEICs.
first_indexed 2024-03-09T05:00:44Z
format Article
id doaj.art-11c31f499e9f4854a76200d1a600bacf
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-09T05:00:44Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-11c31f499e9f4854a76200d1a600bacf2023-12-03T12:59:43ZengMDPI AGApplied Sciences2076-34172021-03-01115239310.3390/app11052393Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication SystemsChhandak Mukherjee0Marina Deng1Virginie Nodjiadjim2Muriel Riet3Colin Mismer4Djeber Guendouz5Christophe Caillaud6Hervé Bertin7Nicolas Vaissiere8Mathieu Luisier9Xin Wen10Magali De Matos11Patrick Mounaix12Cristell Maneux13IMS Laboratory, University of Bordeaux, CNRS UMR 5218, 33405 Talence, FranceIMS Laboratory, University of Bordeaux, CNRS UMR 5218, 33405 Talence, FranceIII-V Lab, A Joint Lab between Nokia Bell Labs, Thales Research&Technology and CEA-LETI, 91767 Palaiseau, FranceIII-V Lab, A Joint Lab between Nokia Bell Labs, Thales Research&Technology and CEA-LETI, 91767 Palaiseau, FranceIII-V Lab, A Joint Lab between Nokia Bell Labs, Thales Research&Technology and CEA-LETI, 91767 Palaiseau, FranceIMS Laboratory, University of Bordeaux, CNRS UMR 5218, 33405 Talence, FranceIII-V Lab, A Joint Lab between Nokia Bell Labs, Thales Research&Technology and CEA-LETI, 91767 Palaiseau, FranceIII-V Lab, A Joint Lab between Nokia Bell Labs, Thales Research&Technology and CEA-LETI, 91767 Palaiseau, FranceIII-V Lab, A Joint Lab between Nokia Bell Labs, Thales Research&Technology and CEA-LETI, 91767 Palaiseau, FranceEidgenössische Technische Hochschule, ETH Zürich, Rämistrasse 101, 8092 Zürich, SwitzerlandEidgenössische Technische Hochschule, ETH Zürich, Rämistrasse 101, 8092 Zürich, SwitzerlandIMS Laboratory, University of Bordeaux, CNRS UMR 5218, 33405 Talence, FranceIMS Laboratory, University of Bordeaux, CNRS UMR 5218, 33405 Talence, FranceIMS Laboratory, University of Bordeaux, CNRS UMR 5218, 33405 Talence, FranceThis review paper reports the prerequisites of a monolithic integrated terahertz (THz) technology capable of meeting the network capacity requirements of beyond-5G wireless communications system (WCS). Keeping in mind that the terahertz signal generation for the beyond-5G networks relies on the technology power loss management, we propose a single computationally efficient software design tool featuring cutting-edge optical devices and high speed III–V electronics for the design of optoelectronic integrated circuits (OEICs) monolithically integrated on a single Indium-Phosphide (InP) die. Through the implementation of accurate and SPICE (Simulation Program with Integrated Circuit Emphasis)-compatible compact models of uni-traveling carrier photodiodes (UTC-PDs) and InP double heterojunction bipolar transistors (DHBTs), we demonstrated that the next generation of THz technologies for beyond-5G networks requires (i) a multi-physical understanding of their operation described through electrical, photonic and thermal equations, (ii) dedicated test structures for characterization in the frequency range higher than 110 GHz, (iii) a dedicated parameter extraction procedure, along with (iv) a circuit reliability assessment methodology. Developed on the research and development activities achieved in the past two decades, we detailed each part of the multiphysics design optimization approach while ensuring technology power loss management through a holistic procedure compatible with existing software tools and design flow for the timely and cost-effective achievement of THz OEICs.https://www.mdpi.com/2076-3417/11/5/2393electrical characterizationcompact modelheterojunction bipolar transistoruni-traveling carrier photodiodeshigh frequencyindium-phosphide
spellingShingle Chhandak Mukherjee
Marina Deng
Virginie Nodjiadjim
Muriel Riet
Colin Mismer
Djeber Guendouz
Christophe Caillaud
Hervé Bertin
Nicolas Vaissiere
Mathieu Luisier
Xin Wen
Magali De Matos
Patrick Mounaix
Cristell Maneux
Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems
Applied Sciences
electrical characterization
compact model
heterojunction bipolar transistor
uni-traveling carrier photodiodes
high frequency
indium-phosphide
title Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems
title_full Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems
title_fullStr Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems
title_full_unstemmed Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems
title_short Towards Monolithic Indium Phosphide (InP)-Based Electronic Photonic Technologies for beyond 5G Communication Systems
title_sort towards monolithic indium phosphide inp based electronic photonic technologies for beyond 5g communication systems
topic electrical characterization
compact model
heterojunction bipolar transistor
uni-traveling carrier photodiodes
high frequency
indium-phosphide
url https://www.mdpi.com/2076-3417/11/5/2393
work_keys_str_mv AT chhandakmukherjee towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT marinadeng towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT virginienodjiadjim towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT murielriet towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT colinmismer towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT djeberguendouz towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT christophecaillaud towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT hervebertin towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT nicolasvaissiere towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT mathieuluisier towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT xinwen towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT magalidematos towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT patrickmounaix towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems
AT cristellmaneux towardsmonolithicindiumphosphideinpbasedelectronicphotonictechnologiesforbeyond5gcommunicationsystems