Using Granule to Search Privacy Preserving Voice in Home IoT Systems

The Home IoT Voice System (HIVS) such as Amazon Alexa or Apple Siri can provide voice-based interfaces for people to conduct the search tasks using their voice. However, how to protect privacy is a big challenge. This paper proposes a novel personalized search scheme of encrypting voice with privacy...

Full description

Bibliographic Details
Main Authors: Wei Li, Yumin Chen, Huosheng Hu, Chao Tang
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8990080/
Description
Summary:The Home IoT Voice System (HIVS) such as Amazon Alexa or Apple Siri can provide voice-based interfaces for people to conduct the search tasks using their voice. However, how to protect privacy is a big challenge. This paper proposes a novel personalized search scheme of encrypting voice with privacy-preserving by the granule computing technique. Firstly, Mel-Frequency Cepstrum Coefficients (MFCC) are used to extract voice features. These features are obfuscated by obfuscation function to protect them from being disclosed the server. Secondly, a series of definitions are presented, including fuzzy granule, fuzzy granule vector, ciphertext granule, operators and metrics. Thirdly, the AES method is used to encrypt voices. A scheme of searchable encrypted voice is designed by creating the fuzzy granule of obfuscation features of voices and the ciphertext granule of the voice. The experiments are conducted on corpus including English, Chinese and Arabic. The results show the feasibility and good performance of the proposed scheme.
ISSN:2169-3536