Optimization and Parametric Study of the Cap Geometry on Collapse Properties of Energy Absorbers under Quasistatic Loading

In the present research, the influence of cap geometry on the collapse of thin-walled aluminum-made energy absorbers with various section geometries was investigated. For this purpose, a total of 35 different absorbers were subjected to axial quasi-static loading. In this respect, five different sec...

Full description

Bibliographic Details
Main Authors: S. Chahardoli, N. Vahdat Azad
Format: Article
Language:English
Published: Bu-Ali Sina University 2019-09-01
Series:Journal of Stress Analysis
Subjects:
Online Access:https://jrstan.basu.ac.ir/article_2987_ecd952480969580c564ccd9fac775102.pdf
Description
Summary:In the present research, the influence of cap geometry on the collapse of thin-walled aluminum-made energy absorbers with various section geometries was investigated. For this purpose, a total of 35 different absorbers were subjected to axial quasi-static loading. In this respect, five different section types and seven different cap configurations were considered for the absorbers and their caps, respectively. The analyses were performed in both experimental and numerical methods. The numerical simulations were conducted using LSDYNA Software and experimental tests were performed to verify the numerical investigations. Good agreement was obtained between the experimental data and numerical results. The results indicated that, in all cases, the application of the cap enhanced the crush force efficiency while lowering maximum force at collapse. In the final stage of the research, optimal absorbers for the cases with open-ended and close-ended caps were proposed using Minitab Software based on the response surface methodology.
ISSN:2588-2597
2588-3054