Solving Triangular Intuitionistic Fuzzy Matrix Game by Applying the Accuracy Function Method

In this paper, the matrix game based on triangular intuitionistic fuzzy payoff is put forward. Then, we get a conclusion that the equilibrium solution of this game model is equivalent to the solution of a pair of the primal−dual single objective intuitionistic fuzzy linear optimization pro...

Full description

Bibliographic Details
Main Authors: Yumei Xing, Dong Qiu
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/10/1258
Description
Summary:In this paper, the matrix game based on triangular intuitionistic fuzzy payoff is put forward. Then, we get a conclusion that the equilibrium solution of this game model is equivalent to the solution of a pair of the primal&#8722;dual single objective intuitionistic fuzzy linear optimization problems <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>I</mi> <mi>F</mi> <mi>L</mi> <mi>O</mi> <mi>P</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>I</mi> <mi>F</mi> <mi>L</mi> <mi>O</mi> <mi>D</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Furthermore, by applying the accuracy function, which is linear, we transform the primal&#8722;dual single objective intuitionistic fuzzy linear optimization problems <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>I</mi> <mi>F</mi> <mi>L</mi> <mi>O</mi> <mi>P</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>I</mi> <mi>F</mi> <mi>L</mi> <mi>O</mi> <mi>D</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> into the primal&#8722;dual discrete linear optimization problems <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>P</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>D</mi> <mn>1</mn> <mo>)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> The above primal&#8722;dual pair <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>P</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>&#8722;<inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>D</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is symmetric in the sense the dual of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>D</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>P</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. Thus the primal&#8722;dual discrete linear optimization problems <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>P</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mi>L</mi> <mi>O</mi> <mi>D</mi> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> are called the symmetric primal&#8722;dual discrete linear optimization problems. Finally, the technique is illustrated by an example.
ISSN:2073-8994