Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB

PCBs are very influential on the manufacture of electronic devices, for example when there is even a small number of PCB paths that are cut off or damaged, the electronic device cannot be operated properly. Therefore, in this study, the author tried to create and analyze a defect checking tool on PC...

Full description

Bibliographic Details
Main Authors: Rangga Ade Julianto, Efrizon Efrizon, Hendrick Hendrick, Laxsmy Devy, Suryadi Suryadi, Yul Antonisfia
Format: Article
Language:Indonesian
Published: Jurusan Teknik Elektro Politeknik Negeri Padang 2022-12-01
Series:Elektron
Subjects:
Online Access:https://jie.pnp.ac.id/index.php/jie/article/view/295
_version_ 1797448166905217024
author Rangga Ade Julianto
Efrizon Efrizon
Hendrick Hendrick
Laxsmy Devy
Suryadi Suryadi
Yul Antonisfia
author_facet Rangga Ade Julianto
Efrizon Efrizon
Hendrick Hendrick
Laxsmy Devy
Suryadi Suryadi
Yul Antonisfia
author_sort Rangga Ade Julianto
collection DOAJ
description PCBs are very influential on the manufacture of electronic devices, for example when there is even a small number of PCB paths that are cut off or damaged, the electronic device cannot be operated properly. Therefore, in this study, the author tried to create and analyze a defect checking tool on PCBs to replace human vision to make it easier and can save costs. This tool is equipped with the help of a Logitech c920 Webcam and a Raspberry Pi 3b+ microprocessor which is used to store and run programs that have been created on Python programming software, so this tool can be used portablely. With these two technologies, Image Processing can be used to detect objects with the OpenCv library and Google Colab. PCB defect detection tool with the help of Image Processing uses yolo convolutional neural network method to help determine path damage on the PCB. You Only Look Once (YOLO) algorithm with five detection classifications, namely short, open circuit, missing hole, mouse bite, and spur. From the results of the study, the results were obtained that the YOLO algorithm was able to detect these five classifications with a value of mAP@0.5 short 90.67%, open circuit 97.86%, Mouse Bite 94.43%, Missing Hole 96.09%, and spur 97.56%.
first_indexed 2024-03-09T14:06:32Z
format Article
id doaj.art-11d407564f4240ec9e456b6a22bd3461
institution Directory Open Access Journal
issn 2085-6989
2654-4733
language Indonesian
last_indexed 2024-03-09T14:06:32Z
publishDate 2022-12-01
publisher Jurusan Teknik Elektro Politeknik Negeri Padang
record_format Article
series Elektron
spelling doaj.art-11d407564f4240ec9e456b6a22bd34612023-11-30T04:09:29ZindJurusan Teknik Elektro Politeknik Negeri PadangElektron2085-69892654-47332022-12-01616610.30630/eji.14.2.295295Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCBRangga Ade Julianto0Efrizon Efrizon1Hendrick Hendrick2Laxsmy Devy3Suryadi Suryadi4Yul Antonisfia5Politeknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPCBs are very influential on the manufacture of electronic devices, for example when there is even a small number of PCB paths that are cut off or damaged, the electronic device cannot be operated properly. Therefore, in this study, the author tried to create and analyze a defect checking tool on PCBs to replace human vision to make it easier and can save costs. This tool is equipped with the help of a Logitech c920 Webcam and a Raspberry Pi 3b+ microprocessor which is used to store and run programs that have been created on Python programming software, so this tool can be used portablely. With these two technologies, Image Processing can be used to detect objects with the OpenCv library and Google Colab. PCB defect detection tool with the help of Image Processing uses yolo convolutional neural network method to help determine path damage on the PCB. You Only Look Once (YOLO) algorithm with five detection classifications, namely short, open circuit, missing hole, mouse bite, and spur. From the results of the study, the results were obtained that the YOLO algorithm was able to detect these five classifications with a value of mAP@0.5 short 90.67%, open circuit 97.86%, Mouse Bite 94.43%, Missing Hole 96.09%, and spur 97.56%.https://jie.pnp.ac.id/index.php/jie/article/view/295pcb, logitech c920 webcam, raspberry pi 3b , image processing, yolo cnn
spellingShingle Rangga Ade Julianto
Efrizon Efrizon
Hendrick Hendrick
Laxsmy Devy
Suryadi Suryadi
Yul Antonisfia
Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB
Elektron
pcb, logitech c920 webcam, raspberry pi 3b , image processing, yolo cnn
title Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB
title_full Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB
title_fullStr Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB
title_full_unstemmed Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB
title_short Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB
title_sort pembuatan alat inspeksi visual jalur pcb menggunakan pengolahan citra untuk kegiatan praktikum pengawatan dan teknologi pcb
topic pcb, logitech c920 webcam, raspberry pi 3b , image processing, yolo cnn
url https://jie.pnp.ac.id/index.php/jie/article/view/295
work_keys_str_mv AT ranggaadejulianto pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb
AT efrizonefrizon pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb
AT hendrickhendrick pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb
AT laxsmydevy pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb
AT suryadisuryadi pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb
AT yulantonisfia pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb