Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB
PCBs are very influential on the manufacture of electronic devices, for example when there is even a small number of PCB paths that are cut off or damaged, the electronic device cannot be operated properly. Therefore, in this study, the author tried to create and analyze a defect checking tool on PC...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | Indonesian |
Published: |
Jurusan Teknik Elektro Politeknik Negeri Padang
2022-12-01
|
Series: | Elektron |
Subjects: | |
Online Access: | https://jie.pnp.ac.id/index.php/jie/article/view/295 |
_version_ | 1797448166905217024 |
---|---|
author | Rangga Ade Julianto Efrizon Efrizon Hendrick Hendrick Laxsmy Devy Suryadi Suryadi Yul Antonisfia |
author_facet | Rangga Ade Julianto Efrizon Efrizon Hendrick Hendrick Laxsmy Devy Suryadi Suryadi Yul Antonisfia |
author_sort | Rangga Ade Julianto |
collection | DOAJ |
description | PCBs are very influential on the manufacture of electronic devices, for example when there is even a small number of PCB paths that are cut off or damaged, the electronic device cannot be operated properly. Therefore, in this study, the author tried to create and analyze a defect checking tool on PCBs to replace human vision to make it easier and can save costs. This tool is equipped with the help of a Logitech c920 Webcam and a Raspberry Pi 3b+ microprocessor which is used to store and run programs that have been created on Python programming software, so this tool can be used portablely. With these two technologies, Image Processing can be used to detect objects with the OpenCv library and Google Colab. PCB defect detection tool with the help of Image Processing uses yolo convolutional neural network method to help determine path damage on the PCB. You Only Look Once (YOLO) algorithm with five detection classifications, namely short, open circuit, missing hole, mouse bite, and spur. From the results of the study, the results were obtained that the YOLO algorithm was able to detect these five classifications with a value of mAP@0.5 short 90.67%, open circuit 97.86%, Mouse Bite 94.43%, Missing Hole 96.09%, and spur 97.56%. |
first_indexed | 2024-03-09T14:06:32Z |
format | Article |
id | doaj.art-11d407564f4240ec9e456b6a22bd3461 |
institution | Directory Open Access Journal |
issn | 2085-6989 2654-4733 |
language | Indonesian |
last_indexed | 2024-03-09T14:06:32Z |
publishDate | 2022-12-01 |
publisher | Jurusan Teknik Elektro Politeknik Negeri Padang |
record_format | Article |
series | Elektron |
spelling | doaj.art-11d407564f4240ec9e456b6a22bd34612023-11-30T04:09:29ZindJurusan Teknik Elektro Politeknik Negeri PadangElektron2085-69892654-47332022-12-01616610.30630/eji.14.2.295295Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCBRangga Ade Julianto0Efrizon Efrizon1Hendrick Hendrick2Laxsmy Devy3Suryadi Suryadi4Yul Antonisfia5Politeknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPoliteknik Negeri PadangPCBs are very influential on the manufacture of electronic devices, for example when there is even a small number of PCB paths that are cut off or damaged, the electronic device cannot be operated properly. Therefore, in this study, the author tried to create and analyze a defect checking tool on PCBs to replace human vision to make it easier and can save costs. This tool is equipped with the help of a Logitech c920 Webcam and a Raspberry Pi 3b+ microprocessor which is used to store and run programs that have been created on Python programming software, so this tool can be used portablely. With these two technologies, Image Processing can be used to detect objects with the OpenCv library and Google Colab. PCB defect detection tool with the help of Image Processing uses yolo convolutional neural network method to help determine path damage on the PCB. You Only Look Once (YOLO) algorithm with five detection classifications, namely short, open circuit, missing hole, mouse bite, and spur. From the results of the study, the results were obtained that the YOLO algorithm was able to detect these five classifications with a value of mAP@0.5 short 90.67%, open circuit 97.86%, Mouse Bite 94.43%, Missing Hole 96.09%, and spur 97.56%.https://jie.pnp.ac.id/index.php/jie/article/view/295pcb, logitech c920 webcam, raspberry pi 3b , image processing, yolo cnn |
spellingShingle | Rangga Ade Julianto Efrizon Efrizon Hendrick Hendrick Laxsmy Devy Suryadi Suryadi Yul Antonisfia Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB Elektron pcb, logitech c920 webcam, raspberry pi 3b , image processing, yolo cnn |
title | Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB |
title_full | Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB |
title_fullStr | Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB |
title_full_unstemmed | Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB |
title_short | Pembuatan Alat Inspeksi Visual Jalur PCB Menggunakan Pengolahan Citra Untuk Kegiatan Praktikum Pengawatan Dan Teknologi PCB |
title_sort | pembuatan alat inspeksi visual jalur pcb menggunakan pengolahan citra untuk kegiatan praktikum pengawatan dan teknologi pcb |
topic | pcb, logitech c920 webcam, raspberry pi 3b , image processing, yolo cnn |
url | https://jie.pnp.ac.id/index.php/jie/article/view/295 |
work_keys_str_mv | AT ranggaadejulianto pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb AT efrizonefrizon pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb AT hendrickhendrick pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb AT laxsmydevy pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb AT suryadisuryadi pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb AT yulantonisfia pembuatanalatinspeksivisualjalurpcbmenggunakanpengolahancitrauntukkegiatanpraktikumpengawatandanteknologipcb |