Alkaline-Based Catalysts for Glycerol Polymerization Reaction: A Review

Polyglycerols (PGs) are biocompatible and highly functional polyols with a wide range of applications, such as emulsifiers, stabilizers and antimicrobial agents, in many industries including cosmetics, food, plastic and biomedical. The demand increase for biobased PGs encourages researchers to devel...

Full description

Bibliographic Details
Main Authors: Negisa Ebadipour, Sébastien Paul, Benjamin Katryniok, Franck Dumeignil
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/10/9/1021
Description
Summary:Polyglycerols (PGs) are biocompatible and highly functional polyols with a wide range of applications, such as emulsifiers, stabilizers and antimicrobial agents, in many industries including cosmetics, food, plastic and biomedical. The demand increase for biobased PGs encourages researchers to develop new catalytic systems for glycerol polymerization. This review focuses on alkaline homogeneous and heterogeneous catalysts. The performances of the alkaline catalysts are compared in terms of conversion and selectivity, and their respective advantages and disadvantages are commented. While homogeneous catalysts exhibit a high catalytic activity, they cannot be recycled and reused, whereas solid catalysts can be partially recycled. The key issue for heterogenous catalytic systems, which is unsolved thus far, is linked to their instability due to partial dissolution in the reaction medium. Further, this paper also reviews the proposed mechanisms of glycerol polymerization over alkaline-based catalysts and discusses the various operating conditions with an impact on performance. More particularly, temperature and amount of catalyst are proven to have a significant influence on glycerol conversion and on its polymerization extent.
ISSN:2073-4344