Construction and Local Equivalence of Dual-Unitary Operators: From Dynamical Maps to Quantum Combinatorial Designs
While quantum circuits built from two-particle dual-unitary (maximally entangled) operators serve as minimal models of typically nonintegrable many-body systems, the construction and characterization of dual-unitary operators themselves are only partially understood. A nonlinear map on the space of...
Main Authors: | Suhail Ahmad Rather, S. Aravinda, Arul Lakshminarayan |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2022-12-01
|
Series: | PRX Quantum |
Online Access: | http://doi.org/10.1103/PRXQuantum.3.040331 |
Similar Items
-
From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy
by: S. Aravinda, et al.
Published: (2021-10-01) -
Local Unitary Equivalence of Quantum States Based on the Tensor Decompositions of Unitary Matrices
by: Jing Wang, et al.
Published: (2023-07-01) -
Operator Entanglement in Local Quantum Circuits I: Chaotic Dual-Unitary Circuits
by: Bruno Bertini, Pavel Kos, Tomaz Prosen
Published: (2020-04-01) -
On unitary equivalence of bilateral operator valued weighted shifts
by: Jakub Kośmider
Published: (2019-01-01) -
Exact dynamics in dual-unitary quantum circuits with projective measurements
by: Pieter W. Claeys, et al.
Published: (2022-12-01)