Expression of Gal-9 on Dendritic Cells and Soluble Forms of TIM-3/Gal-9 in Patients Suffering from Endometriosis
Immune system dysregulation is clinically evident in the pathogenesis of endometriosis (EMS). Changes in the dendritic cells (DCs) activity or phenotype may be involved in the implantation and growth of endometrial tissue outside the uterus in the disease. The TIM-3/Gal-9 axis is implicated in the d...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/6/5948 |
Summary: | Immune system dysregulation is clinically evident in the pathogenesis of endometriosis (EMS). Changes in the dendritic cells (DCs) activity or phenotype may be involved in the implantation and growth of endometrial tissue outside the uterus in the disease. The TIM-3/Gal-9 axis is implicated in the development of immune tolerance. However, the knowledge about the exact role of this pathway in the EMS is extremely poor. In the present study, we evaluated the expression of Gal-9 on myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in the peripheral blood (PB) and peritoneal fluid (PF) of both EMS patients (<i>n</i> = 82) and healthy subjects (<i>n</i> = 10) via flow cytometry. We also investigated the concentrations of soluble Gal-9 and TIM-3 in the plasma and PF of EMS patients and the control group using ELISA. We showed significantly elevated percentages of mDCs-Gal-9<sup>+</sup> and pDCs-Gal-9<sup>+</sup>, and significantly higher concentrations of the soluble form of Gal-9 and TIM-3 in the PF of EMS patients than in circulation. Our results led us to conclude that the accumulation of Gal-9 expressing mDCs and pDCs in the PF and high sTIM-3/Gal-9 production in the peritoneal cavity could represent the hallmark of immune regulation in EMS patients, which may augment the inflammatory process and development/maintenance of local immunosuppression. |
---|---|
ISSN: | 1661-6596 1422-0067 |