Summary: | Activation of Bell nonlocality refers to the phenomenon that some entangled mixed states that admit a local hidden variable model in the standard Bell scenario nevertheless reveal their nonlocal nature in more exotic measurement scenarios. We present such a scenario that involves broadcasting the local subsystems of a single-copy of a bipartite quantum state to multiple parties, and use the scenario to study the nonlocal properties of the two-qubit isotropic state:
$
\nonumber \rho_\alpha = \alpha\,|\Phi^+ \rangle\langle \Phi^+|+(1-\alpha)\frac{\mathbb{1}}{4}.
$
We present two main results, considering that Nature allows for (i) the most general no-signalling correlations, and (ii) the most general quantum correlations at the level of any hidden variable theory. We show that the state does not admit a local hidden variable description for $\alpha>0.559$ and $\alpha>\frac{1}{2}$, in cases (i) and (ii) respectively, which in both cases provides a device-independent certification of the entanglement of the state. These bounds are significantly lower than the previously best-known bound of $0.697$ for both Bell nonlocality and device-independent entanglement certification using a single copy of the state. Our results show that strong examples of non-classicality are possible with a small number of resources.
|