Mountain waves modulate the water vapor distribution in the UTLS

The water vapor distribution in the upper troposphere–lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mounta...

Full description

Bibliographic Details
Main Authors: R. Heller, C. Voigt, S. Beaton, A. Dörnbrack, A. Giez, S. Kaufmann, C. Mallaun, H. Schlager, J. Wagner, K. Young, M. Rapp
Format: Article
Language:English
Published: Copernicus Publications 2017-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/17/14853/2017/acp-17-14853-2017.pdf
_version_ 1818309729671184384
author R. Heller
C. Voigt
C. Voigt
S. Beaton
A. Dörnbrack
A. Giez
S. Kaufmann
C. Mallaun
H. Schlager
J. Wagner
K. Young
M. Rapp
M. Rapp
author_facet R. Heller
C. Voigt
C. Voigt
S. Beaton
A. Dörnbrack
A. Giez
S. Kaufmann
C. Mallaun
H. Schlager
J. Wagner
K. Young
M. Rapp
M. Rapp
author_sort R. Heller
collection DOAJ
description The water vapor distribution in the upper troposphere–lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. <br><br> For our case study, we further estimate greater than 1 W m<sup>−2</sup> radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our regional study may motivate further investigations of the global effects of mountain waves on the UTLS water vapor distributions and its radiative effects.
first_indexed 2024-12-13T07:34:48Z
format Article
id doaj.art-12363d2750b74724840bedfdddd1aac2
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-13T07:34:48Z
publishDate 2017-12-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-12363d2750b74724840bedfdddd1aac22022-12-21T23:55:06ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-12-0117148531486910.5194/acp-17-14853-2017Mountain waves modulate the water vapor distribution in the UTLSR. Heller0C. Voigt1C. Voigt2S. Beaton3A. Dörnbrack4A. Giez5S. Kaufmann6C. Mallaun7H. Schlager8J. Wagner9K. Young10M. Rapp11M. Rapp12Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyJohannes-Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre, Mainz, GermanyNational Center for Atmospheric Research, Boulder, Colorado, USADeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Flugexperimente, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Flugexperimente, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyNational Center for Atmospheric Research, Boulder, Colorado, USADeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyLudwig-Maximillians-Universität München, Meteorologisches Institut München, Munich, GermanyThe water vapor distribution in the upper troposphere–lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. <br><br> For our case study, we further estimate greater than 1 W m<sup>−2</sup> radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our regional study may motivate further investigations of the global effects of mountain waves on the UTLS water vapor distributions and its radiative effects.https://www.atmos-chem-phys.net/17/14853/2017/acp-17-14853-2017.pdf
spellingShingle R. Heller
C. Voigt
C. Voigt
S. Beaton
A. Dörnbrack
A. Giez
S. Kaufmann
C. Mallaun
H. Schlager
J. Wagner
K. Young
M. Rapp
M. Rapp
Mountain waves modulate the water vapor distribution in the UTLS
Atmospheric Chemistry and Physics
title Mountain waves modulate the water vapor distribution in the UTLS
title_full Mountain waves modulate the water vapor distribution in the UTLS
title_fullStr Mountain waves modulate the water vapor distribution in the UTLS
title_full_unstemmed Mountain waves modulate the water vapor distribution in the UTLS
title_short Mountain waves modulate the water vapor distribution in the UTLS
title_sort mountain waves modulate the water vapor distribution in the utls
url https://www.atmos-chem-phys.net/17/14853/2017/acp-17-14853-2017.pdf
work_keys_str_mv AT rheller mountainwavesmodulatethewatervapordistributionintheutls
AT cvoigt mountainwavesmodulatethewatervapordistributionintheutls
AT cvoigt mountainwavesmodulatethewatervapordistributionintheutls
AT sbeaton mountainwavesmodulatethewatervapordistributionintheutls
AT adornbrack mountainwavesmodulatethewatervapordistributionintheutls
AT agiez mountainwavesmodulatethewatervapordistributionintheutls
AT skaufmann mountainwavesmodulatethewatervapordistributionintheutls
AT cmallaun mountainwavesmodulatethewatervapordistributionintheutls
AT hschlager mountainwavesmodulatethewatervapordistributionintheutls
AT jwagner mountainwavesmodulatethewatervapordistributionintheutls
AT kyoung mountainwavesmodulatethewatervapordistributionintheutls
AT mrapp mountainwavesmodulatethewatervapordistributionintheutls
AT mrapp mountainwavesmodulatethewatervapordistributionintheutls