Mountain waves modulate the water vapor distribution in the UTLS
The water vapor distribution in the upper troposphere–lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mounta...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-12-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/17/14853/2017/acp-17-14853-2017.pdf |
_version_ | 1818309729671184384 |
---|---|
author | R. Heller C. Voigt C. Voigt S. Beaton A. Dörnbrack A. Giez S. Kaufmann C. Mallaun H. Schlager J. Wagner K. Young M. Rapp M. Rapp |
author_facet | R. Heller C. Voigt C. Voigt S. Beaton A. Dörnbrack A. Giez S. Kaufmann C. Mallaun H. Schlager J. Wagner K. Young M. Rapp M. Rapp |
author_sort | R. Heller |
collection | DOAJ |
description | The water vapor distribution in the upper
troposphere–lower stratosphere (UTLS) region has a strong impact on the
atmospheric radiation budget. Transport and mixing processes on different
scales mainly determine the water vapor concentration in the UTLS. Here, we
investigate the effect of mountain waves on the vertical transport and mixing
of water vapor. For this purpose we analyze measurements of water vapor and
meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment
(DEEPWAVE) in New Zealand. By combining different methods, we develop a new
approach to quantify location, direction and irreversibility of the water
vapor transport during a strong mountain wave event on 4 July 2014. A large
positive vertical water vapor flux is detected above the Southern Alps
extending from the troposphere to the stratosphere in the altitude range
between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level
shows that the enhanced upward water vapor transport above the mountains is
caused by mountain waves with horizontal wavelengths between 22 and 60 km. A
downward transport of water vapor with 22 km wavelength is observed in the
lee-side of the mountain ridge. While it is a priori not clear whether the
observed fluxes are irreversible, low Richardson numbers derived from
dropsonde data indicate enhanced turbulence in the tropopause region related
to the mountain wave event. Together with the analysis of the water vapor to
ozone correlation, we find indications for vertical transport followed by
irreversible mixing of water vapor.
<br><br>
For our case study, we further estimate greater than 1 W m<sup>−2</sup> radiative
forcing by the increased water vapor concentrations in the UTLS above the
Southern Alps of New Zealand, resulting from mountain waves relative to
unperturbed conditions. Hence, mountain waves have a great potential to
affect the water vapor distribution in the UTLS. Our regional study may
motivate further investigations of the global effects of mountain waves on
the UTLS water vapor distributions and its radiative effects. |
first_indexed | 2024-12-13T07:34:48Z |
format | Article |
id | doaj.art-12363d2750b74724840bedfdddd1aac2 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-13T07:34:48Z |
publishDate | 2017-12-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-12363d2750b74724840bedfdddd1aac22022-12-21T23:55:06ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-12-0117148531486910.5194/acp-17-14853-2017Mountain waves modulate the water vapor distribution in the UTLSR. Heller0C. Voigt1C. Voigt2S. Beaton3A. Dörnbrack4A. Giez5S. Kaufmann6C. Mallaun7H. Schlager8J. Wagner9K. Young10M. Rapp11M. Rapp12Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyJohannes-Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre, Mainz, GermanyNational Center for Atmospheric Research, Boulder, Colorado, USADeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Flugexperimente, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Flugexperimente, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyNational Center for Atmospheric Research, Boulder, Colorado, USADeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyLudwig-Maximillians-Universität München, Meteorologisches Institut München, Munich, GermanyThe water vapor distribution in the upper troposphere–lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. <br><br> For our case study, we further estimate greater than 1 W m<sup>−2</sup> radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our regional study may motivate further investigations of the global effects of mountain waves on the UTLS water vapor distributions and its radiative effects.https://www.atmos-chem-phys.net/17/14853/2017/acp-17-14853-2017.pdf |
spellingShingle | R. Heller C. Voigt C. Voigt S. Beaton A. Dörnbrack A. Giez S. Kaufmann C. Mallaun H. Schlager J. Wagner K. Young M. Rapp M. Rapp Mountain waves modulate the water vapor distribution in the UTLS Atmospheric Chemistry and Physics |
title | Mountain waves modulate the water vapor distribution in the UTLS |
title_full | Mountain waves modulate the water vapor distribution in the UTLS |
title_fullStr | Mountain waves modulate the water vapor distribution in the UTLS |
title_full_unstemmed | Mountain waves modulate the water vapor distribution in the UTLS |
title_short | Mountain waves modulate the water vapor distribution in the UTLS |
title_sort | mountain waves modulate the water vapor distribution in the utls |
url | https://www.atmos-chem-phys.net/17/14853/2017/acp-17-14853-2017.pdf |
work_keys_str_mv | AT rheller mountainwavesmodulatethewatervapordistributionintheutls AT cvoigt mountainwavesmodulatethewatervapordistributionintheutls AT cvoigt mountainwavesmodulatethewatervapordistributionintheutls AT sbeaton mountainwavesmodulatethewatervapordistributionintheutls AT adornbrack mountainwavesmodulatethewatervapordistributionintheutls AT agiez mountainwavesmodulatethewatervapordistributionintheutls AT skaufmann mountainwavesmodulatethewatervapordistributionintheutls AT cmallaun mountainwavesmodulatethewatervapordistributionintheutls AT hschlager mountainwavesmodulatethewatervapordistributionintheutls AT jwagner mountainwavesmodulatethewatervapordistributionintheutls AT kyoung mountainwavesmodulatethewatervapordistributionintheutls AT mrapp mountainwavesmodulatethewatervapordistributionintheutls AT mrapp mountainwavesmodulatethewatervapordistributionintheutls |