Bumping algorithm for set-valued shifted tableaux

We present an insertion algorithm of Robinson–Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K...

Full description

Bibliographic Details
Main Authors: Takeshi Ikeda, Hiroshi Naruse, Yasuhide Numata
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2011-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2931/pdf
Description
Summary:We present an insertion algorithm of Robinson–Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K-theoretic analogue of the Schur Q-functions.
ISSN:1365-8050