Antivirus applied to JAR malware detection based on runtime behaviors

Abstract Java vulnerabilities correspond to 91% of all exploits observed on the worldwide web. The present work aims to create antivirus software with machine learning and artificial intelligence and master in Java malware detection. Within the proposed methodology, the suspected JAR sample is execu...

Full description

Bibliographic Details
Main Authors: Ricardo P. Pinheiro, Sidney M. L. Lima, Danilo M. Souza, Sthéfano H. M. T. Silva, Petrônio G. Lopes, Rafael D. T. de Lima, Jemerson R. de Oliveira, Thyago de A. Monteiro, Sérgio M. M. Fernandes, Edison de Q. Albuquerque, Washington W. A. da Silva, Wellington P. dos Santos
Format: Article
Language:English
Published: Nature Portfolio 2022-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-05921-5
_version_ 1818486392110448640
author Ricardo P. Pinheiro
Sidney M. L. Lima
Danilo M. Souza
Sthéfano H. M. T. Silva
Petrônio G. Lopes
Rafael D. T. de Lima
Jemerson R. de Oliveira
Thyago de A. Monteiro
Sérgio M. M. Fernandes
Edison de Q. Albuquerque
Washington W. A. da Silva
Wellington P. dos Santos
author_facet Ricardo P. Pinheiro
Sidney M. L. Lima
Danilo M. Souza
Sthéfano H. M. T. Silva
Petrônio G. Lopes
Rafael D. T. de Lima
Jemerson R. de Oliveira
Thyago de A. Monteiro
Sérgio M. M. Fernandes
Edison de Q. Albuquerque
Washington W. A. da Silva
Wellington P. dos Santos
author_sort Ricardo P. Pinheiro
collection DOAJ
description Abstract Java vulnerabilities correspond to 91% of all exploits observed on the worldwide web. The present work aims to create antivirus software with machine learning and artificial intelligence and master in Java malware detection. Within the proposed methodology, the suspected JAR sample is executed to intentionally infect the Windows OS monitored in a controlled environment. In all, our antivirus monitors and considers, statistically, 6824 actions that the suspected JAR file can perform when executed. Our antivirus achieved an average performance of 91.58% in the distinction between benign and malware JAR files. Different initial conditions, learning functions and architectures of our antivirus are investigated. The limitations of commercial antiviruses can be supplied by intelligent antiviruses. Instead of blacklist-based models, our antivirus allows JAR malware detection preventively and not reactively as Oracle’s Java and traditional antivirus modus operandi.
first_indexed 2024-12-10T16:22:20Z
format Article
id doaj.art-12573bdc9b29447d85ca48df50fa7d31
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-10T16:22:20Z
publishDate 2022-02-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-12573bdc9b29447d85ca48df50fa7d312022-12-22T01:41:46ZengNature PortfolioScientific Reports2045-23222022-02-0112111710.1038/s41598-022-05921-5Antivirus applied to JAR malware detection based on runtime behaviorsRicardo P. Pinheiro0Sidney M. L. Lima1Danilo M. Souza2Sthéfano H. M. T. Silva3Petrônio G. Lopes4Rafael D. T. de Lima5Jemerson R. de Oliveira6Thyago de A. Monteiro7Sérgio M. M. Fernandes8Edison de Q. Albuquerque9Washington W. A. da Silva10Wellington P. dos Santos11Department of Computing, University of PernambucoElectronics and Systems Department, Federal University of PernambucoDepartment of Computing, University of PernambucoDepartment of Computing, University of PernambucoDepartment of Computing, University of PernambucoDepartment of Computing, University of PernambucoDepartment of Computing, University of PernambucoDepartment of Computing, University of PernambucoDepartment of Computing, University of PernambucoDepartment of Computing, University of PernambucoBiomedical Engineering Department, Federal University of PernambucoBiomedical Engineering Department, Federal University of PernambucoAbstract Java vulnerabilities correspond to 91% of all exploits observed on the worldwide web. The present work aims to create antivirus software with machine learning and artificial intelligence and master in Java malware detection. Within the proposed methodology, the suspected JAR sample is executed to intentionally infect the Windows OS monitored in a controlled environment. In all, our antivirus monitors and considers, statistically, 6824 actions that the suspected JAR file can perform when executed. Our antivirus achieved an average performance of 91.58% in the distinction between benign and malware JAR files. Different initial conditions, learning functions and architectures of our antivirus are investigated. The limitations of commercial antiviruses can be supplied by intelligent antiviruses. Instead of blacklist-based models, our antivirus allows JAR malware detection preventively and not reactively as Oracle’s Java and traditional antivirus modus operandi.https://doi.org/10.1038/s41598-022-05921-5
spellingShingle Ricardo P. Pinheiro
Sidney M. L. Lima
Danilo M. Souza
Sthéfano H. M. T. Silva
Petrônio G. Lopes
Rafael D. T. de Lima
Jemerson R. de Oliveira
Thyago de A. Monteiro
Sérgio M. M. Fernandes
Edison de Q. Albuquerque
Washington W. A. da Silva
Wellington P. dos Santos
Antivirus applied to JAR malware detection based on runtime behaviors
Scientific Reports
title Antivirus applied to JAR malware detection based on runtime behaviors
title_full Antivirus applied to JAR malware detection based on runtime behaviors
title_fullStr Antivirus applied to JAR malware detection based on runtime behaviors
title_full_unstemmed Antivirus applied to JAR malware detection based on runtime behaviors
title_short Antivirus applied to JAR malware detection based on runtime behaviors
title_sort antivirus applied to jar malware detection based on runtime behaviors
url https://doi.org/10.1038/s41598-022-05921-5
work_keys_str_mv AT ricardoppinheiro antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT sidneymllima antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT danilomsouza antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT sthefanohmtsilva antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT petronioglopes antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT rafaeldtdelima antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT jemersonrdeoliveira antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT thyagodeamonteiro antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT sergiommfernandes antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT edisondeqalbuquerque antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT washingtonwadasilva antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors
AT wellingtonpdossantos antivirusappliedtojarmalwaredetectionbasedonruntimebehaviors