Applying fuzzy logic to estimate the parameters of the length-weight relationship

Abstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our g...

Full description

Bibliographic Details
Main Authors: S. D. Bitar, C. P. Campos, C. E. C. Freitas
Format: Article
Language:English
Published: Instituto Internacional de Ecologia
Series:Brazilian Journal of Biology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611&lng=en&tlng=en
_version_ 1819131130712948736
author S. D. Bitar
C. P. Campos
C. E. C. Freitas
author_facet S. D. Bitar
C. P. Campos
C. E. C. Freitas
author_sort S. D. Bitar
collection DOAJ
description Abstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.
first_indexed 2024-12-22T09:10:37Z
format Article
id doaj.art-125c45855cef4085862a2ee85dd04eb5
institution Directory Open Access Journal
issn 1678-4375
language English
last_indexed 2024-12-22T09:10:37Z
publisher Instituto Internacional de Ecologia
record_format Article
series Brazilian Journal of Biology
spelling doaj.art-125c45855cef4085862a2ee85dd04eb52022-12-21T18:31:26ZengInstituto Internacional de EcologiaBrazilian Journal of Biology1678-437576361161810.1590/1519-6984.20014S1519-69842016000300611Applying fuzzy logic to estimate the parameters of the length-weight relationshipS. D. BitarC. P. CamposC. E. C. FreitasAbstract We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611&lng=en&tlng=enallometric modelCichlafuzzy logicparameter estimation
spellingShingle S. D. Bitar
C. P. Campos
C. E. C. Freitas
Applying fuzzy logic to estimate the parameters of the length-weight relationship
Brazilian Journal of Biology
allometric model
Cichla
fuzzy logic
parameter estimation
title Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_full Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_fullStr Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_full_unstemmed Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_short Applying fuzzy logic to estimate the parameters of the length-weight relationship
title_sort applying fuzzy logic to estimate the parameters of the length weight relationship
topic allometric model
Cichla
fuzzy logic
parameter estimation
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842016000300611&lng=en&tlng=en
work_keys_str_mv AT sdbitar applyingfuzzylogictoestimatetheparametersofthelengthweightrelationship
AT cpcampos applyingfuzzylogictoestimatetheparametersofthelengthweightrelationship
AT cecfreitas applyingfuzzylogictoestimatetheparametersofthelengthweightrelationship