Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm

Introduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong associat...

Full description

Bibliographic Details
Main Authors: Juan Pablo Princich, Patricio Andres Donnelly-Kehoe, Alvaro Deleglise, Mariana Nahir Vallejo-Azar, Guido Orlando Pascariello, Pablo Seoane, Jose Gabriel Veron Do Santos, Santiago Collavini, Alejandro Hugo Nasimbera, Silvia Kochen
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-02-01
Series:Frontiers in Neurology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fneur.2021.613967/full
_version_ 1818877862901448704
author Juan Pablo Princich
Juan Pablo Princich
Patricio Andres Donnelly-Kehoe
Alvaro Deleglise
Mariana Nahir Vallejo-Azar
Guido Orlando Pascariello
Pablo Seoane
Pablo Seoane
Jose Gabriel Veron Do Santos
Santiago Collavini
Santiago Collavini
Santiago Collavini
Alejandro Hugo Nasimbera
Alejandro Hugo Nasimbera
Silvia Kochen
author_facet Juan Pablo Princich
Juan Pablo Princich
Patricio Andres Donnelly-Kehoe
Alvaro Deleglise
Mariana Nahir Vallejo-Azar
Guido Orlando Pascariello
Pablo Seoane
Pablo Seoane
Jose Gabriel Veron Do Santos
Santiago Collavini
Santiago Collavini
Santiago Collavini
Alejandro Hugo Nasimbera
Alejandro Hugo Nasimbera
Silvia Kochen
author_sort Juan Pablo Princich
collection DOAJ
description Introduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS.Methods: Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy.Results: Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions.Conclusion: We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.
first_indexed 2024-12-19T14:05:02Z
format Article
id doaj.art-1264f87304a84fb1817132f3b7c67848
institution Directory Open Access Journal
issn 1664-2295
language English
last_indexed 2024-12-19T14:05:02Z
publishDate 2021-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neurology
spelling doaj.art-1264f87304a84fb1817132f3b7c678482022-12-21T20:18:20ZengFrontiers Media S.A.Frontiers in Neurology1664-22952021-02-011210.3389/fneur.2021.613967613967Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification AlgorithmJuan Pablo Princich0Juan Pablo Princich1Patricio Andres Donnelly-Kehoe2Alvaro Deleglise3Mariana Nahir Vallejo-Azar4Guido Orlando Pascariello5Pablo Seoane6Pablo Seoane7Jose Gabriel Veron Do Santos8Santiago Collavini9Santiago Collavini10Santiago Collavini11Alejandro Hugo Nasimbera12Alejandro Hugo Nasimbera13Silvia Kochen14ENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, ArgentinaHospital de Pediatría J.P Garrahan, Departamento de Neuroimágenes, Buenos Aires, ArgentinaCentro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Procesamiento de Señales Multimedia - División Neuroimágenes, Universidad Nacional de Rosario, Rosario, ArgentinaInstituto de Fisiología y Biofísica B. Houssay (IFIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Fisiología y Biofísica, Universidad de Buenos Aires, Buenos Aires, ArgentinaENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, ArgentinaCentro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Grupo de Procesamiento de Señales Multimedia - División Neuroimágenes, Universidad Nacional de Rosario, Rosario, ArgentinaENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, ArgentinaHospital J.M Ramos Mejía, Centro de Epilepsia, Buenos Aires, ArgentinaENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, ArgentinaENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, ArgentinaInstituto de investigación en Electrónica, Control y Procesamiento de Señales (LEICI), Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, ArgentinaInstituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, Florencio Varela, ArgentinaENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, ArgentinaHospital J.M Ramos Mejía, Centro de Epilepsia, Buenos Aires, ArgentinaENyS (Estudios en Neurociencias y Sistemas Complejos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Arturo Jauretche y Hospital El Cruce, Florencio Varela, ArgentinaIntroduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS.Methods: Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy.Results: Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions.Conclusion: We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.https://www.frontiersin.org/articles/10.3389/fneur.2021.613967/fullepilepsyvolumetryhippocampal sclerosisrandom forest classifierMRI
spellingShingle Juan Pablo Princich
Juan Pablo Princich
Patricio Andres Donnelly-Kehoe
Alvaro Deleglise
Mariana Nahir Vallejo-Azar
Guido Orlando Pascariello
Pablo Seoane
Pablo Seoane
Jose Gabriel Veron Do Santos
Santiago Collavini
Santiago Collavini
Santiago Collavini
Alejandro Hugo Nasimbera
Alejandro Hugo Nasimbera
Silvia Kochen
Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm
Frontiers in Neurology
epilepsy
volumetry
hippocampal sclerosis
random forest classifier
MRI
title Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm
title_full Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm
title_fullStr Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm
title_full_unstemmed Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm
title_short Diagnostic Performance of MRI Volumetry in Epilepsy Patients With Hippocampal Sclerosis Supported Through a Random Forest Automatic Classification Algorithm
title_sort diagnostic performance of mri volumetry in epilepsy patients with hippocampal sclerosis supported through a random forest automatic classification algorithm
topic epilepsy
volumetry
hippocampal sclerosis
random forest classifier
MRI
url https://www.frontiersin.org/articles/10.3389/fneur.2021.613967/full
work_keys_str_mv AT juanpabloprincich diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT juanpabloprincich diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT patricioandresdonnellykehoe diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT alvarodeleglise diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT mariananahirvallejoazar diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT guidoorlandopascariello diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT pabloseoane diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT pabloseoane diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT josegabrielverondosantos diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT santiagocollavini diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT santiagocollavini diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT santiagocollavini diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT alejandrohugonasimbera diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT alejandrohugonasimbera diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm
AT silviakochen diagnosticperformanceofmrivolumetryinepilepsypatientswithhippocampalsclerosissupportedthrougharandomforestautomaticclassificationalgorithm