Experimental Cyclic Heat Stress on Intestinal Permeability, Bone Mineralization, Leukocyte Proportions and Meat Quality in Broiler Chickens

The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with...

Full description

Bibliographic Details
Main Authors: Alessandro Rocchi, Jared Ruff, Clay J. Maynard, Aaron J. Forga, Roberto Señas-Cuesta, Elizabeth S. Greene, Juan D. Latorre, Christine N. Vuong, Brittany D. Graham, Xochitl Hernandez-Velasco, Guillermo Tellez, Victor M. Petrone-Garcia, Lauren Laverty, Billy M. Hargis, Gisela F. Erf, Casey M. Owens, Guillermo Tellez-Isaias
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/12/10/1273
Description
Summary:The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with two pens each, providing eight replicates per treatment in each trial (<i>n</i> = 20 chicks/replicate). Environmental conditions in the TN group were established to simulate commercial production settings. Heat stress chickens were exposed to cyclic HS at 35 °C for 12 h/day from days 7–42. Performance parameters, intestinal permeability, bone parameters, meat quality, and leukocyte proportions were estimated. There was a significant (<i>p</i> < 0.05) reduction in body weight (BW), BW gain, and feed intake, but the feed conversion ratio increased in chickens under cyclic HS. Moreover, HS chickens had a significantly higher gut permeability, monocyte and basophil levels, but less bone mineralization than TN chickens. Nevertheless, the TN group had significant increases in breast yield, woody breast, and white striping in breast fillets compared to HS. These results present an alternative model to our previously published continuous HS model to better reflect commercial conditions to evaluate commercially available nutraceuticals or products with claims of reducing the severity of heat stress.
ISSN:2076-2615