Micron-Sized Silica-PNIPAM Core-Shell Microgels with Tunable Shell-To-Core Ratio

Micron-sized hard core-soft shell hybrid microgels are promising model systems for studies of soft matter as they enable in-situ optical investigations and their structures/morphologies can be engineered with a great variety. Yet, protocols that yield micron-sized core-shell microgels with a tailora...

Full description

Bibliographic Details
Main Authors: Keumkyung Kuk, Lukas Gregel, Vahan Abgarjan, Caspar Croonenbrock, Sebastian Hänsch, Matthias Karg
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/8/8/516
Description
Summary:Micron-sized hard core-soft shell hybrid microgels are promising model systems for studies of soft matter as they enable in-situ optical investigations and their structures/morphologies can be engineered with a great variety. Yet, protocols that yield micron-sized core-shell microgels with a tailorable shell-to-core size ratio are rarely available. In this work, we report on the one-pot synthesis protocol for micron-sized silica-poly(<i>N</i>-isopropylacrylamide) core-shell microgels that has excellent control over the shell-to-core ratio. Small-angle light scattering and microscopy of 2- and 3-dimensional assemblies of the synthesized microgels confirm that the produced microgels are monodisperse and suitable for optical investigation even at high packing fractions.
ISSN:2310-2861