Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model

As computational fluid dynamics (CFD) advances, entropy generation minimization based on CFD becomes attractive for optimizing complex heat-transfer systems. This optimization depends on the accuracy of CFD results, such that accurate turbulence models, such as elliptic relaxation or elliptic blendi...

Full description

Bibliographic Details
Main Authors: Xianglong Yang, Lei Yang
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/2/295
_version_ 1797480453085593600
author Xianglong Yang
Lei Yang
author_facet Xianglong Yang
Lei Yang
author_sort Xianglong Yang
collection DOAJ
description As computational fluid dynamics (CFD) advances, entropy generation minimization based on CFD becomes attractive for optimizing complex heat-transfer systems. This optimization depends on the accuracy of CFD results, such that accurate turbulence models, such as elliptic relaxation or elliptic blending turbulence models, become important. The performance of a previously developed elliptic blending turbulence model (the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model) to predict the rate of entropy generation in the fully developed turbulent circular tube flow with constant heat flux was studied to provide some guidelines for using this class of turbulence model to calculate entropy generation in complex systems. The flow and temperature fields were simulated by using a CFD package, and then the rate of entropy generation was calculated in post-processing. The analytical correlations and results of two popular turbulence models (the realizable <i>k</i>–<i>ε</i> and the shear stress transport (SST) <i>k</i>–<i>ω</i> models) were used as references to demonstrate the accuracy of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model. The findings indicate that the turbulent Prandtl number (Pr<sub>t</sub>) influences the entropy generation rate due to heat-transfer irreversibility. Pr<sub>t</sub> = 0.85 produces the best results for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model. For the realizable <i>k</i>–<i>ε</i> and SST <i>k</i>–<i>ω</i> models, Pr<sub>t</sub> = 0.85 and Pr<sub>t</sub> = 0.92 produce the best results, respectively. For the realizable <i>k</i>–<i>ε</i> and the SST <i>k</i>–<i>ω</i> models, the two methods used to predict the rate of entropy generation due to friction irreversibility produce the same results. However, for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model, the rates of entropy generation due to friction irreversibility predicted by the two methods are different. The difference at a Reynolds number of 100,000 is about 14%. The method that incorporates the effective turbulent viscosity should be used to predict the rate of entropy generation due to friction irreversibility for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model. Furthermore, when the temperature in the flow field changes dramatically, the temperature-dependent fluid properties must be considered.
first_indexed 2024-03-09T22:01:13Z
format Article
id doaj.art-128793ced7954fb68cbaae1b06963c50
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T22:01:13Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-128793ced7954fb68cbaae1b06963c502023-11-23T19:49:05ZengMDPI AGEntropy1099-43002022-02-0124229510.3390/e24020295Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence ModelXianglong Yang0Lei Yang1College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, ChinaAs computational fluid dynamics (CFD) advances, entropy generation minimization based on CFD becomes attractive for optimizing complex heat-transfer systems. This optimization depends on the accuracy of CFD results, such that accurate turbulence models, such as elliptic relaxation or elliptic blending turbulence models, become important. The performance of a previously developed elliptic blending turbulence model (the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model) to predict the rate of entropy generation in the fully developed turbulent circular tube flow with constant heat flux was studied to provide some guidelines for using this class of turbulence model to calculate entropy generation in complex systems. The flow and temperature fields were simulated by using a CFD package, and then the rate of entropy generation was calculated in post-processing. The analytical correlations and results of two popular turbulence models (the realizable <i>k</i>–<i>ε</i> and the shear stress transport (SST) <i>k</i>–<i>ω</i> models) were used as references to demonstrate the accuracy of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model. The findings indicate that the turbulent Prandtl number (Pr<sub>t</sub>) influences the entropy generation rate due to heat-transfer irreversibility. Pr<sub>t</sub> = 0.85 produces the best results for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model. For the realizable <i>k</i>–<i>ε</i> and SST <i>k</i>–<i>ω</i> models, Pr<sub>t</sub> = 0.85 and Pr<sub>t</sub> = 0.92 produce the best results, respectively. For the realizable <i>k</i>–<i>ε</i> and the SST <i>k</i>–<i>ω</i> models, the two methods used to predict the rate of entropy generation due to friction irreversibility produce the same results. However, for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model, the rates of entropy generation due to friction irreversibility predicted by the two methods are different. The difference at a Reynolds number of 100,000 is about 14%. The method that incorporates the effective turbulent viscosity should be used to predict the rate of entropy generation due to friction irreversibility for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>SST</mi><mo> </mo></mrow><mi>k</mi><mtext>–</mtext><mi>ω</mi><mtext>–</mtext><mi>φ</mi><mtext>–</mtext><mi>α</mi></mrow></semantics></math></inline-formula> model. Furthermore, when the temperature in the flow field changes dramatically, the temperature-dependent fluid properties must be considered.https://www.mdpi.com/1099-4300/24/2/295entropy generationnumerical studycircular tubeelliptic blendingturbulence model
spellingShingle Xianglong Yang
Lei Yang
Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model
Entropy
entropy generation
numerical study
circular tube
elliptic blending
turbulence model
title Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model
title_full Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model
title_fullStr Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model
title_full_unstemmed Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model
title_short Numerical Study of Entropy Generation in Fully Developed Turbulent Circular Tube Flow Using an Elliptic Blending Turbulence Model
title_sort numerical study of entropy generation in fully developed turbulent circular tube flow using an elliptic blending turbulence model
topic entropy generation
numerical study
circular tube
elliptic blending
turbulence model
url https://www.mdpi.com/1099-4300/24/2/295
work_keys_str_mv AT xianglongyang numericalstudyofentropygenerationinfullydevelopedturbulentcirculartubeflowusinganellipticblendingturbulencemodel
AT leiyang numericalstudyofentropygenerationinfullydevelopedturbulentcirculartubeflowusinganellipticblendingturbulencemodel