Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc

Motivated by q-calculus, we define a new family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Σ</mo></semantics></math></inline-formula>, which is the family of bi-univalent anal...

Full description

Bibliographic Details
Main Authors: Alaa H. El-Qadeem, Mohamed A. Mamon, Ibrahim S. Elshazly
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/4/758
_version_ 1797443472261644288
author Alaa H. El-Qadeem
Mohamed A. Mamon
Ibrahim S. Elshazly
author_facet Alaa H. El-Qadeem
Mohamed A. Mamon
Ibrahim S. Elshazly
author_sort Alaa H. El-Qadeem
collection DOAJ
description Motivated by q-calculus, we define a new family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Σ</mo></semantics></math></inline-formula>, which is the family of bi-univalent analytic functions in the open unit disc <i>U</i> that is related to the Einstein function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We establish estimates for the first two Taylor–Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, and the Fekete–Szegö inequality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>μ</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup></mfenced></semantics></math></inline-formula> for the functions that belong to these families.
first_indexed 2024-03-09T12:56:32Z
format Article
id doaj.art-1294ad77646f42ea86191b2a49bb9f4a
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T12:56:32Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-1294ad77646f42ea86191b2a49bb9f4a2023-11-30T21:59:27ZengMDPI AGSymmetry2073-89942022-04-0114475810.3390/sym14040758Application of Einstein Function on Bi-Univalent Functions Defined on the Unit DiscAlaa H. El-Qadeem0Mohamed A. Mamon1Ibrahim S. Elshazly2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, EgyptDepartment of Mathematics, Faculty of Science, Tanta University, Tanta 31527, EgyptDepartment of Basic Sciences, Common First Year, King Saud University, Alriyad 11451, Saudi ArabiaMotivated by q-calculus, we define a new family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Σ</mo></semantics></math></inline-formula>, which is the family of bi-univalent analytic functions in the open unit disc <i>U</i> that is related to the Einstein function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We establish estimates for the first two Taylor–Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>2</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo></mrow><msub><mi>a</mi><mn>3</mn></msub><mrow><mo>|</mo></mrow></mrow></semantics></math></inline-formula>, and the Fekete–Szegö inequality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>3</mn></msub><mo>−</mo><mi>μ</mi><msubsup><mi>a</mi><mn>2</mn><mn>2</mn></msubsup></mfenced></semantics></math></inline-formula> for the functions that belong to these families.https://www.mdpi.com/2073-8994/14/4/758analytic functionEinstein functionbernoulli numbersbi-univalent functionquantum calculussubordination
spellingShingle Alaa H. El-Qadeem
Mohamed A. Mamon
Ibrahim S. Elshazly
Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc
Symmetry
analytic function
Einstein function
bernoulli numbers
bi-univalent function
quantum calculus
subordination
title Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc
title_full Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc
title_fullStr Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc
title_full_unstemmed Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc
title_short Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc
title_sort application of einstein function on bi univalent functions defined on the unit disc
topic analytic function
Einstein function
bernoulli numbers
bi-univalent function
quantum calculus
subordination
url https://www.mdpi.com/2073-8994/14/4/758
work_keys_str_mv AT alaahelqadeem applicationofeinsteinfunctiononbiunivalentfunctionsdefinedontheunitdisc
AT mohamedamamon applicationofeinsteinfunctiononbiunivalentfunctionsdefinedontheunitdisc
AT ibrahimselshazly applicationofeinsteinfunctiononbiunivalentfunctionsdefinedontheunitdisc