Seismic Repair Cost-Based Assessment for Low-Rise Reinforced Concrete Archetype Buildings through Incremental Dynamic Analysis

This study presents the performance-based seismic assessment of low-rise reinforced concrete archetype buildings, considering repair costs for ordinary moment-resistant frames (OMF) and dual systems consisting of OMF plus special shear walls (SSW). Historically, the OMF systems, conceived for reside...

Full description

Bibliographic Details
Main Authors: Juan Patricio Chicaiza-Fuentes, Ana Gabriela Haro-Baez
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/13/12/3116
Description
Summary:This study presents the performance-based seismic assessment of low-rise reinforced concrete archetype buildings, considering repair costs for ordinary moment-resistant frames (OMF) and dual systems consisting of OMF plus special shear walls (SSW). Historically, the OMF systems, conceived for residential purposes in Ecuador resulting from informal construction, have reported poor responses under seismic forces. This study analyzes damage levels through fragility curves as a function of the maximum global drift reached through incremental dynamic analysis. For this, two archetypes with OMF and two with a similar configuration, including structural walls, are modeled to define a loss function and annual collapse probabilities. As a result, it is noted that systems with structural walls significantly reduce repair costs by between 75 and 90% of the total cost of the building, and prevent collapse. Systems with ordinary moment frames report total losses, implying their use should be limited in areas of high seismicity.
ISSN:2075-5309