Edge Detection Algorithm of a Symmetric Difference Kernel SAR Image Based on the GAN Network Model

The symmetrical difference kernel SAR image edge detection algorithm based on the Canny operator can usually achieve effective edge detection of a single view image. When detecting a multi-view SAR image edge, it has the disadvantage of a low detection accuracy. An edge detection algorithm for a sym...

Full description

Bibliographic Details
Main Authors: Ziwen Zhang, Yijun Liu, Tie Liu, Yang Li, Wujian Ye
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/4/557
Description
Summary:The symmetrical difference kernel SAR image edge detection algorithm based on the Canny operator can usually achieve effective edge detection of a single view image. When detecting a multi-view SAR image edge, it has the disadvantage of a low detection accuracy. An edge detection algorithm for a symmetric difference nuclear SAR image based on the GAN network model is proposed. Multi-view data of a symmetric difference nuclear SAR image are generated by the GAN network model. According to the results of multi-view data generation, an edge detection model for an arbitrary direction symmetric difference nuclear SAR image is constructed. A non-edge is eliminated by edge post-processing. The Hough transform is used to calculate the edge direction to realize the accurate detection of the edge of the SAR image. The experimental results show that the average classification accuracy of the proposed algorithm is 93.8%, 96.85% of the detection edges coincide with the correct edges, and 97.08% of the detection edges fall into the buffer of three pixel widths, whichshows that the proposed algorithm has a high accuracy of edge detection for kernel SAR images.
ISSN:2073-8994