TCF/LEF regulation of the topologically associated domain ADI promotes mESCs to exit the pluripotent ground state

Summary: Mouse embryonic stem cells (mESCs) can be maintained in vitro in defined N2B27 medium supplemented with two chemical inhibitors for GSK3 and MEK (2i) and the cytokine leukemia inhibitory factor (LIF), which act synergistically to promote self-renewal and pluripotency. Here, we find that gen...

Full description

Bibliographic Details
Main Authors: Nikolaos Doumpas, Simon Söderholm, Smarth Narula, Steven Moreira, Bradley W. Doble, Claudio Cantù, Konrad Basler
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124721011529
Description
Summary:Summary: Mouse embryonic stem cells (mESCs) can be maintained in vitro in defined N2B27 medium supplemented with two chemical inhibitors for GSK3 and MEK (2i) and the cytokine leukemia inhibitory factor (LIF), which act synergistically to promote self-renewal and pluripotency. Here, we find that genetic deletion of the four genes encoding the TCF/LEF transcription factors confers mESCs with the ability to self-renew in N2B27 medium alone. TCF/LEF quadruple knockout (qKO) mESCs display dysregulation of several genes, including Aire, Dnmt3l, and IcosL, located adjacent to each other within a topologically associated domain (TAD). Aire, Dnmt3l, and IcosL appear to be regulated by TCF/LEF in a β-catenin independent manner. Moreover, downregulation of Aire and Dnmt3l in wild-type mESCs mimics the loss of TCF/LEF and increases mESC survival in the absence of 2iL. Hence, this study identifies TCF/LEF effectors that mediate exit from the pluripotent state.
ISSN:2211-1247