Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2
This paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature (k,k, 2,0), where k >= 2. We prove that there are no non-split homogeneous supermanifolds in this case. See [3...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2009-09-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/947 |
_version_ | 1797877925531353088 |
---|---|
author | M. A. Bashkin |
author_facet | M. A. Bashkin |
author_sort | M. A. Bashkin |
collection | DOAJ |
description | This paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature (k,k, 2,0), where k >= 2. We prove that there are no non-split homogeneous supermanifolds in this case. See [3] and [4] for more information about the complex supermanifolds theory. |
first_indexed | 2024-04-10T02:25:40Z |
format | Article |
id | doaj.art-12c13e063559430aa6d6b4451e85e9ea |
institution | Directory Open Access Journal |
issn | 1818-1015 2313-5417 |
language | English |
last_indexed | 2024-04-10T02:25:40Z |
publishDate | 2009-09-01 |
publisher | Yaroslavl State University |
record_format | Article |
series | Моделирование и анализ информационных систем |
spelling | doaj.art-12c13e063559430aa6d6b4451e85e9ea2023-03-13T08:07:30ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172009-09-011631421688Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2M. A. Bashkin0Рыбинская государственная авиационная технологическая академия им. П.А.СоловьеваThis paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature (k,k, 2,0), where k >= 2. We prove that there are no non-split homogeneous supermanifolds in this case. See [3] and [4] for more information about the complex supermanifolds theory.https://www.mais-journal.ru/jour/article/view/947комплексное супермногообразиеоднородное комплексное супермногообразиеретракткасательный пучок |
spellingShingle | M. A. Bashkin Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2 Моделирование и анализ информационных систем комплексное супермногообразие однородное комплексное супермногообразие ретракт касательный пучок |
title | Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2 |
title_full | Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2 |
title_fullStr | Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2 |
title_full_unstemmed | Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2 |
title_short | Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2 |
title_sort | homogeneous and 0 homogeneous supermanifolds with retract cp 1 4 kk20 when k 2 |
topic | комплексное супермногообразие однородное комплексное супермногообразие ретракт касательный пучок |
url | https://www.mais-journal.ru/jour/article/view/947 |
work_keys_str_mv | AT mabashkin homogeneousand0homogeneoussupermanifoldswithretractcp14kk20whenk2 |