Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2

This paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature (k,k, 2,0), where k >= 2. We prove that there are no non-split homogeneous supermanifolds in this case. See [3...

Full description

Bibliographic Details
Main Author: M. A. Bashkin
Format: Article
Language:English
Published: Yaroslavl State University 2009-09-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/947
_version_ 1797877925531353088
author M. A. Bashkin
author_facet M. A. Bashkin
author_sort M. A. Bashkin
collection DOAJ
description This paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature (k,k, 2,0), where k >= 2. We prove that there are no non-split homogeneous supermanifolds in this case. See [3] and [4] for more information about the complex supermanifolds theory.
first_indexed 2024-04-10T02:25:40Z
format Article
id doaj.art-12c13e063559430aa6d6b4451e85e9ea
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:25:40Z
publishDate 2009-09-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-12c13e063559430aa6d6b4451e85e9ea2023-03-13T08:07:30ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172009-09-011631421688Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2M. A. Bashkin0Рыбинская государственная авиационная технологическая академия им. П.А.СоловьеваThis paper contain the description of non-split even-homogeneous supermanifolds over the complex projective line whose retract corresponds to a holomorphic vector bundle of the signature (k,k, 2,0), where k >= 2. We prove that there are no non-split homogeneous supermanifolds in this case. See [3] and [4] for more information about the complex supermanifolds theory.https://www.mais-journal.ru/jour/article/view/947комплексное супермногообразиеоднородное комплексное супермногообразиеретракткасательный пучок
spellingShingle M. A. Bashkin
Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2
Моделирование и анализ информационных систем
комплексное супермногообразие
однородное комплексное супермногообразие
ретракт
касательный пучок
title Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2
title_full Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2
title_fullStr Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2
title_full_unstemmed Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2
title_short Homogeneous and 0-homogeneous supermanifolds with retract CP(1|4 kk20) when k >= 2
title_sort homogeneous and 0 homogeneous supermanifolds with retract cp 1 4 kk20 when k 2
topic комплексное супермногообразие
однородное комплексное супермногообразие
ретракт
касательный пучок
url https://www.mais-journal.ru/jour/article/view/947
work_keys_str_mv AT mabashkin homogeneousand0homogeneoussupermanifoldswithretractcp14kk20whenk2