Model Predictive Control for PMSM Based on Discrete Space Vector Modulation with RLS Parameter Identification

Model Predictive Control (MPC) based on Discrete Space Vector Modulation (DSVM) has the advantages of simple mathematical model and fast dynamic response. It is widely used in permanent magnet synchronous motor (PMSM). Additionally, the control performance of DSVM-MPC is influenced by the accuracy o...

Full description

Bibliographic Details
Main Authors: Hao Yu, Jiajun Wang, Zhuangzhuang Xin
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/11/4041
Description
Summary:Model Predictive Control (MPC) based on Discrete Space Vector Modulation (DSVM) has the advantages of simple mathematical model and fast dynamic response. It is widely used in permanent magnet synchronous motor (PMSM). Additionally, the control performance of DSVM-MPC is influenced by the accuracy of motor parameters and the select speed of optimal voltage vector. In order to identify motor parameters accurately, model predictive control for PMSM based on discrete space vector modulation with recursive least squares (RLS) parameter identification is proposed in this paper. Additionally, a method to preselect candidate voltage vectors is proposed to select the optimal voltage vector more quickly. The simulation model of RLS-DSVM-MPC is established to simulate the influence of different parameters on PMSM performance. The simulation results show that model predictive control for PMSM based on discrete space vector modulation with RLS parameter identification has a better control performance than that of without RLS parameter identification.
ISSN:1996-1073