Condensed matter physics in big discrete time crystals

Abstract We review the application of discrete time crystals created in a Bose-Einstein condensate (BEC) of ultracold atoms bouncing resonantly on an oscillating atom mirror to the investigation of condensed matter phenomena in the time dimension. Such a bouncing BEC system can exhibit dramatic brea...

Full description

Bibliographic Details
Main Authors: Peter Hannaford, Krzysztof Sacha
Format: Article
Language:English
Published: Springer 2022-05-01
Series:AAPPS Bulletin
Subjects:
Online Access:https://doi.org/10.1007/s43673-022-00041-8
_version_ 1818189938223480832
author Peter Hannaford
Krzysztof Sacha
author_facet Peter Hannaford
Krzysztof Sacha
author_sort Peter Hannaford
collection DOAJ
description Abstract We review the application of discrete time crystals created in a Bose-Einstein condensate (BEC) of ultracold atoms bouncing resonantly on an oscillating atom mirror to the investigation of condensed matter phenomena in the time dimension. Such a bouncing BEC system can exhibit dramatic breaking of time-translation symmetry, allowing the creation of discrete time crystals having up to about 100 temporal lattice sites and suitable for hosting a broad range of temporal condensed matter phenomena. We first consider single-particle condensed matter phenomena in the time dimension which include Anderson localization due to temporal disorder, topological time crystals, and quasi-crystal structures in time. We then discuss many-body temporal condensed matter phenomena including Mott insulator phases in time, many-body localization in time, many-body topological time crystals and time crystals having long-range exotic interactions. We also discuss the construction of two (or three) dimensional time lattices, involving the bouncing of a BEC between two (or three) orthogonal oscillating mirrors and between two oscillating mirrors oriented at 45∘. The latter configuration supports a versatile Möbius strip geometry which can host a variety of two-dimensional time lattices including a honeycomb time lattice and a Lieb square time lattice. Finally, we discuss the construction of a six-dimensional time-space lattice based on periodically driven BECs trapped in a three-dimensional optical lattice.
first_indexed 2024-12-11T23:50:46Z
format Article
id doaj.art-12daf66b89434f8e9b628add6f3478f4
institution Directory Open Access Journal
issn 2309-4710
language English
last_indexed 2024-12-11T23:50:46Z
publishDate 2022-05-01
publisher Springer
record_format Article
series AAPPS Bulletin
spelling doaj.art-12daf66b89434f8e9b628add6f3478f42022-12-22T00:45:29ZengSpringerAAPPS Bulletin2309-47102022-05-0132111610.1007/s43673-022-00041-8Condensed matter physics in big discrete time crystalsPeter Hannaford0Krzysztof Sacha1Optical Sciences Centre, Swinburne University of TechnologyInstitute of Theoretical Physics, Jagiellonian UniversityAbstract We review the application of discrete time crystals created in a Bose-Einstein condensate (BEC) of ultracold atoms bouncing resonantly on an oscillating atom mirror to the investigation of condensed matter phenomena in the time dimension. Such a bouncing BEC system can exhibit dramatic breaking of time-translation symmetry, allowing the creation of discrete time crystals having up to about 100 temporal lattice sites and suitable for hosting a broad range of temporal condensed matter phenomena. We first consider single-particle condensed matter phenomena in the time dimension which include Anderson localization due to temporal disorder, topological time crystals, and quasi-crystal structures in time. We then discuss many-body temporal condensed matter phenomena including Mott insulator phases in time, many-body localization in time, many-body topological time crystals and time crystals having long-range exotic interactions. We also discuss the construction of two (or three) dimensional time lattices, involving the bouncing of a BEC between two (or three) orthogonal oscillating mirrors and between two oscillating mirrors oriented at 45∘. The latter configuration supports a versatile Möbius strip geometry which can host a variety of two-dimensional time lattices including a honeycomb time lattice and a Lieb square time lattice. Finally, we discuss the construction of a six-dimensional time-space lattice based on periodically driven BECs trapped in a three-dimensional optical lattice.https://doi.org/10.1007/s43673-022-00041-8Time crystalsBose-Einstein condensateUltracold atomsCondensed matter
spellingShingle Peter Hannaford
Krzysztof Sacha
Condensed matter physics in big discrete time crystals
AAPPS Bulletin
Time crystals
Bose-Einstein condensate
Ultracold atoms
Condensed matter
title Condensed matter physics in big discrete time crystals
title_full Condensed matter physics in big discrete time crystals
title_fullStr Condensed matter physics in big discrete time crystals
title_full_unstemmed Condensed matter physics in big discrete time crystals
title_short Condensed matter physics in big discrete time crystals
title_sort condensed matter physics in big discrete time crystals
topic Time crystals
Bose-Einstein condensate
Ultracold atoms
Condensed matter
url https://doi.org/10.1007/s43673-022-00041-8
work_keys_str_mv AT peterhannaford condensedmatterphysicsinbigdiscretetimecrystals
AT krzysztofsacha condensedmatterphysicsinbigdiscretetimecrystals