A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)

Sugarcane Bacilliform Guadeloupe A Virus (SCBGAV, genus Badnavirus, family Caulimoviridae) is an emerging, deleterious pathogen of sugarcane which presents a substantial barrier to producing high sugarcane earnings. Sugarcane bacilliform viruses (SCBVs) are one of the main species that infect sugarc...

Full description

Bibliographic Details
Main Authors: Fakiha Ashraf, Muhammad Aleem Ashraf, Xiaowen Hu, Shuzhen Zhang
Format: Article
Language:English
Published: PeerJ Inc. 2020-01-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/8359.pdf
_version_ 1797422138894843904
author Fakiha Ashraf
Muhammad Aleem Ashraf
Xiaowen Hu
Shuzhen Zhang
author_facet Fakiha Ashraf
Muhammad Aleem Ashraf
Xiaowen Hu
Shuzhen Zhang
author_sort Fakiha Ashraf
collection DOAJ
description Sugarcane Bacilliform Guadeloupe A Virus (SCBGAV, genus Badnavirus, family Caulimoviridae) is an emerging, deleterious pathogen of sugarcane which presents a substantial barrier to producing high sugarcane earnings. Sugarcane bacilliform viruses (SCBVs) are one of the main species that infect sugarcane. During the last 30 years, significant genetic changes in SCBV strains have been observed with a high risk of disease incidence associated with crop damage. SCBV infection may lead to significant losses in biomass production in susceptible sugarcane cultivars. The circular, double-stranded (ds) DNA genome of SCBGAV (7.4 Kb) is composed of three open reading frames (ORFs) on the positive strand that replicate by a reverse transcriptase. SCBGAV can infect sugarcane in a semipersistent manner via the insect vectors sugarcane mealybug species. In the current study, we used miRNA target prediction algorithms to identify and comprehensively analyze the genome-wide sugarcane (Saccharum officinarum L.)-encoded microRNA (miRNA) targets against the SCBGAV. Mature miRNA target sequences were retrieved from the miRBase (miRNA database) and were further analyzed for hybridization to the SCBGAV genome. Multiple computational approaches—including miRNA-target seed pairing, multiple target positions, minimum free energy, target site accessibility, maximum complementarity, pattern recognition and minimum folding energy for attachments—were considered by all algorithms. Among them, sof-miR396 was identified as the top effective candidate, capable of targeting the vital ORF3 of the SCBGAV genome. miRanda, RNA22 and RNAhybrid algorithms predicted hybridization of sof-miR396 at common locus position 3394. The predicted sugarcane miRNAs against viral mRNA targets possess antiviral activities, leading to translational inhibition by mRNA cleavage. Interaction network of sugarcane-encoded miRNAs with SCBGAV genes, created using Circos, allow analyze new targets. The finding of the present study acts as a first step towards the creation of SCBGAV-resistant sugarcane through the expression of the identified miRNAs.
first_indexed 2024-03-09T07:27:53Z
format Article
id doaj.art-12f17737e1bd4c1493feb6a958e222c5
institution Directory Open Access Journal
issn 2167-8359
language English
last_indexed 2024-03-09T07:27:53Z
publishDate 2020-01-01
publisher PeerJ Inc.
record_format Article
series PeerJ
spelling doaj.art-12f17737e1bd4c1493feb6a958e222c52023-12-03T06:49:17ZengPeerJ Inc.PeerJ2167-83592020-01-018e835910.7717/peerj.8359A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)Fakiha Ashraf0Muhammad Aleem Ashraf1Xiaowen Hu2Shuzhen Zhang3Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, ChinaHaikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, ChinaZhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guandong, ChinaInstitute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, ChinaSugarcane Bacilliform Guadeloupe A Virus (SCBGAV, genus Badnavirus, family Caulimoviridae) is an emerging, deleterious pathogen of sugarcane which presents a substantial barrier to producing high sugarcane earnings. Sugarcane bacilliform viruses (SCBVs) are one of the main species that infect sugarcane. During the last 30 years, significant genetic changes in SCBV strains have been observed with a high risk of disease incidence associated with crop damage. SCBV infection may lead to significant losses in biomass production in susceptible sugarcane cultivars. The circular, double-stranded (ds) DNA genome of SCBGAV (7.4 Kb) is composed of three open reading frames (ORFs) on the positive strand that replicate by a reverse transcriptase. SCBGAV can infect sugarcane in a semipersistent manner via the insect vectors sugarcane mealybug species. In the current study, we used miRNA target prediction algorithms to identify and comprehensively analyze the genome-wide sugarcane (Saccharum officinarum L.)-encoded microRNA (miRNA) targets against the SCBGAV. Mature miRNA target sequences were retrieved from the miRBase (miRNA database) and were further analyzed for hybridization to the SCBGAV genome. Multiple computational approaches—including miRNA-target seed pairing, multiple target positions, minimum free energy, target site accessibility, maximum complementarity, pattern recognition and minimum folding energy for attachments—were considered by all algorithms. Among them, sof-miR396 was identified as the top effective candidate, capable of targeting the vital ORF3 of the SCBGAV genome. miRanda, RNA22 and RNAhybrid algorithms predicted hybridization of sof-miR396 at common locus position 3394. The predicted sugarcane miRNAs against viral mRNA targets possess antiviral activities, leading to translational inhibition by mRNA cleavage. Interaction network of sugarcane-encoded miRNAs with SCBGAV genes, created using Circos, allow analyze new targets. The finding of the present study acts as a first step towards the creation of SCBGAV-resistant sugarcane through the expression of the identified miRNAs.https://peerj.com/articles/8359.pdfComputational algorithmsR languagemiRNASaccharum officinarumSugarcane Bacilliform Guadeloupe A VirusTarget prediction
spellingShingle Fakiha Ashraf
Muhammad Aleem Ashraf
Xiaowen Hu
Shuzhen Zhang
A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)
PeerJ
Computational algorithms
R language
miRNA
Saccharum officinarum
Sugarcane Bacilliform Guadeloupe A Virus
Target prediction
title A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)
title_full A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)
title_fullStr A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)
title_full_unstemmed A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)
title_short A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.)
title_sort novel computational approach to the silencing of sugarcane bacilliform guadeloupe a virus determines potential host derived micrornas in sugarcane saccharum officinarum l
topic Computational algorithms
R language
miRNA
Saccharum officinarum
Sugarcane Bacilliform Guadeloupe A Virus
Target prediction
url https://peerj.com/articles/8359.pdf
work_keys_str_mv AT fakihaashraf anovelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml
AT muhammadaleemashraf anovelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml
AT xiaowenhu anovelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml
AT shuzhenzhang anovelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml
AT fakihaashraf novelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml
AT muhammadaleemashraf novelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml
AT xiaowenhu novelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml
AT shuzhenzhang novelcomputationalapproachtothesilencingofsugarcanebacilliformguadeloupeavirusdeterminespotentialhostderivedmicrornasinsugarcanesaccharumofficinaruml