Transmission-reciprocal transmission index and coindex of graphs

The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v)rs(u) = \sum\nolimits_{v \in V\left( G \right)} {{1 \over {d\left( {u,v} \right)}}}, where d(u, v) is the distance between vertex u a...

Full description

Bibliographic Details
Main Authors: Ramane Harishchandra S., Kitturmath Deepa V., Bhajantri Kavita
Format: Article
Language:English
Published: Sciendo 2022-08-01
Series:Acta Universitatis Sapientiae: Informatica
Subjects:
Online Access:https://doi.org/10.2478/ausi-2022-0006
_version_ 1811185964709576704
author Ramane Harishchandra S.
Kitturmath Deepa V.
Bhajantri Kavita
author_facet Ramane Harishchandra S.
Kitturmath Deepa V.
Bhajantri Kavita
author_sort Ramane Harishchandra S.
collection DOAJ
description The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v)rs(u) = \sum\nolimits_{v \in V\left( G \right)} {{1 \over {d\left( {u,v} \right)}}}, where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v))TRT\left( G \right) = \sum\nolimits_{uv \in E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} and its coindex TRT¯(G)=∑uv∉E(G)(σ(u)rs(u)+σ(v)rs(v))\overline {TRT} \left( G \right) = \sum\nolimits_{uv \notin E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)}, where E(G) is the edge set of a graph G and establish the relation between TRT(G) and TRT¯(G)\overline {TRT} \left( G \right)(G). Further compute this index for some standard class of graphs and obtain bounds for it.
first_indexed 2024-04-11T13:39:27Z
format Article
id doaj.art-12fa419d51494f9ab42e1f55b7a31603
institution Directory Open Access Journal
issn 2066-7760
language English
last_indexed 2024-04-11T13:39:27Z
publishDate 2022-08-01
publisher Sciendo
record_format Article
series Acta Universitatis Sapientiae: Informatica
spelling doaj.art-12fa419d51494f9ab42e1f55b7a316032022-12-22T04:21:21ZengSciendoActa Universitatis Sapientiae: Informatica2066-77602022-08-011418410310.2478/ausi-2022-0006Transmission-reciprocal transmission index and coindex of graphsRamane Harishchandra S.0Kitturmath Deepa V.1Bhajantri Kavita2Department of Mathematics, Karnatak University, Dharwad-580003, IndiaDepartment of Mathematics, Karnatak University, Dharwad-580003, IndiaDepartment of Mathematics, JSS Banashankari Arts, Commerce and Shantikumar Gubbi Science College, Vidyagiri, Dharwad-580004, IndiaThe transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v)rs(u) = \sum\nolimits_{v \in V\left( G \right)} {{1 \over {d\left( {u,v} \right)}}}, where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v))TRT\left( G \right) = \sum\nolimits_{uv \in E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} and its coindex TRT¯(G)=∑uv∉E(G)(σ(u)rs(u)+σ(v)rs(v))\overline {TRT} \left( G \right) = \sum\nolimits_{uv \notin E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)}, where E(G) is the edge set of a graph G and establish the relation between TRT(G) and TRT¯(G)\overline {TRT} \left( G \right)(G). Further compute this index for some standard class of graphs and obtain bounds for it.https://doi.org/10.2478/ausi-2022-0006distancetransmission of a vertexreciprocal transmission of a vertextransmission-reciprocal transmission index05c1205c09
spellingShingle Ramane Harishchandra S.
Kitturmath Deepa V.
Bhajantri Kavita
Transmission-reciprocal transmission index and coindex of graphs
Acta Universitatis Sapientiae: Informatica
distance
transmission of a vertex
reciprocal transmission of a vertex
transmission-reciprocal transmission index
05c12
05c09
title Transmission-reciprocal transmission index and coindex of graphs
title_full Transmission-reciprocal transmission index and coindex of graphs
title_fullStr Transmission-reciprocal transmission index and coindex of graphs
title_full_unstemmed Transmission-reciprocal transmission index and coindex of graphs
title_short Transmission-reciprocal transmission index and coindex of graphs
title_sort transmission reciprocal transmission index and coindex of graphs
topic distance
transmission of a vertex
reciprocal transmission of a vertex
transmission-reciprocal transmission index
05c12
05c09
url https://doi.org/10.2478/ausi-2022-0006
work_keys_str_mv AT ramaneharishchandras transmissionreciprocaltransmissionindexandcoindexofgraphs
AT kitturmathdeepav transmissionreciprocaltransmissionindexandcoindexofgraphs
AT bhajantrikavita transmissionreciprocaltransmissionindexandcoindexofgraphs