Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)

In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow>&l...

Full description

Bibliographic Details
Main Authors: Leonardo Gutierrez, Adrian Huerta, Evelin Sabino, Luc Bourrel, Frédéric Frappart, Waldo Lavado-Casimiro
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/22/5432
_version_ 1827638813824909312
author Leonardo Gutierrez
Adrian Huerta
Evelin Sabino
Luc Bourrel
Frédéric Frappart
Waldo Lavado-Casimiro
author_facet Leonardo Gutierrez
Adrian Huerta
Evelin Sabino
Luc Bourrel
Frédéric Frappart
Waldo Lavado-Casimiro
author_sort Leonardo Gutierrez
collection DOAJ
description In soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula>), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>D</mi></mrow></semantics></math></inline-formula>), which relates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> to precipitation. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> estimation. This study evaluates the performance of a new gridded dataset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>D</mi></mrow></semantics></math></inline-formula> in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000–2020. By using this method, a correlation of 0.94 was found between PISCO_reed and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> obtained by the observed data. An average annual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> for Peru of 7840 MJ · mm · ha<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>· h<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was estimated with a general increase towards the lowland Amazon regions, and high values were found on the North Pacific Coast area of Peru. The spatial identification of the most at risk areas of erosion was evaluated through a relationship between the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>D</mi></mrow></semantics></math></inline-formula> and rainfall. Both erosivity datasets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.
first_indexed 2024-03-09T16:28:07Z
format Article
id doaj.art-12fbf8c0ce0742de9b1a734a74b90c9b
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T16:28:07Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-12fbf8c0ce0742de9b1a734a74b90c9b2023-11-24T15:04:52ZengMDPI AGRemote Sensing2072-42922023-11-011522543210.3390/rs15225432Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)Leonardo Gutierrez0Adrian Huerta1Evelin Sabino2Luc Bourrel3Frédéric Frappart4Waldo Lavado-Casimiro5Servicio Nacional de Meteorología e Hidrología (SENAMHI), Lima 15072, PeruServicio Nacional de Meteorología e Hidrología (SENAMHI), Lima 15072, PeruServicio Nacional de Meteorología e Hidrología (SENAMHI), Lima 15072, PeruGéosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, IRD, UPS, CNES, OMP, 31000 Toulouse, FranceISPA, Bordeaux Sciences Agro, INRAE, 33140 Villenave d’Ornon, FranceServicio Nacional de Meteorología e Hidrología (SENAMHI), Lima 15072, PeruIn soil erosion estimation models, the variables with the greatest impact are rainfall erosivity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula>), which is the measurement of precipitation energy and its potential capacity to cause erosion, and erosivity density (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>D</mi></mrow></semantics></math></inline-formula>), which relates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> to precipitation. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> requires high temporal resolution records for its estimation. However, due to the limited observed information and the increasing availability of rainfall estimates based on remote sensing, recent research has shown the usefulness of using observed-corrected satellite data for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> estimation. This study evaluates the performance of a new gridded dataset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>D</mi></mrow></semantics></math></inline-formula> in Peru (PISCO_reed) by merging data from the IMERG v06 product, through a new calibration approach with hourly records of automatic weather stations, during the period of 2000–2020. By using this method, a correlation of 0.94 was found between PISCO_reed and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> obtained by the observed data. An average annual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>E</mi></mrow></semantics></math></inline-formula> for Peru of 7840 MJ · mm · ha<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>· h<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was estimated with a general increase towards the lowland Amazon regions, and high values were found on the North Pacific Coast area of Peru. The spatial identification of the most at risk areas of erosion was evaluated through a relationship between the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>D</mi></mrow></semantics></math></inline-formula> and rainfall. Both erosivity datasets will allow us to expand our fundamental understanding and quantify soil erosion with greater precision.https://www.mdpi.com/2072-4292/15/22/5432rainfall erosivityerosivity densitysatellite rainfall productIMERGhourly observed rainfallPeru
spellingShingle Leonardo Gutierrez
Adrian Huerta
Evelin Sabino
Luc Bourrel
Frédéric Frappart
Waldo Lavado-Casimiro
Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
Remote Sensing
rainfall erosivity
erosivity density
satellite rainfall product
IMERG
hourly observed rainfall
Peru
title Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_full Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_fullStr Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_full_unstemmed Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_short Rainfall Erosivity in Peru: A New Gridded Dataset Based on GPM-IMERG and Comprehensive Assessment (2000–2020)
title_sort rainfall erosivity in peru a new gridded dataset based on gpm imerg and comprehensive assessment 2000 2020
topic rainfall erosivity
erosivity density
satellite rainfall product
IMERG
hourly observed rainfall
Peru
url https://www.mdpi.com/2072-4292/15/22/5432
work_keys_str_mv AT leonardogutierrez rainfallerosivityinperuanewgriddeddatasetbasedongpmimergandcomprehensiveassessment20002020
AT adrianhuerta rainfallerosivityinperuanewgriddeddatasetbasedongpmimergandcomprehensiveassessment20002020
AT evelinsabino rainfallerosivityinperuanewgriddeddatasetbasedongpmimergandcomprehensiveassessment20002020
AT lucbourrel rainfallerosivityinperuanewgriddeddatasetbasedongpmimergandcomprehensiveassessment20002020
AT fredericfrappart rainfallerosivityinperuanewgriddeddatasetbasedongpmimergandcomprehensiveassessment20002020
AT waldolavadocasimiro rainfallerosivityinperuanewgriddeddatasetbasedongpmimergandcomprehensiveassessment20002020