Kolmogorov variation: KAM with knobs (à la Kolmogorov)

In this paper we reconsider the original Kolmogorov normal form algorithm [26] with a variation on the handling of the frequencies. At difference with respect to the Kolmogorov approach, we do not keep the frequencies fixed along the normalization procedure. Besides, we select the frequencies of the...

Full description

Bibliographic Details
Main Authors: Marco Sansottera, Veronica Danesi
Format: Article
Language:English
Published: AIMS Press 2023-10-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mine.2023089?viewType=HTML
_version_ 1797448849906728960
author Marco Sansottera
Veronica Danesi
author_facet Marco Sansottera
Veronica Danesi
author_sort Marco Sansottera
collection DOAJ
description In this paper we reconsider the original Kolmogorov normal form algorithm [26] with a variation on the handling of the frequencies. At difference with respect to the Kolmogorov approach, we do not keep the frequencies fixed along the normalization procedure. Besides, we select the frequencies of the final invariant torus and determine a posteriori the corresponding starting ones. In particular, we replace the classical translation step with a change of the frequencies. The algorithm is based on the original scheme of Kolmogorov, thus exploiting the fast convergence of the Newton-Kantorovich method.
first_indexed 2024-03-09T14:16:22Z
format Article
id doaj.art-130353e16b11428d810b06b9a206cf2f
institution Directory Open Access Journal
issn 2640-3501
language English
last_indexed 2024-03-09T14:16:22Z
publishDate 2023-10-01
publisher AIMS Press
record_format Article
series Mathematics in Engineering
spelling doaj.art-130353e16b11428d810b06b9a206cf2f2023-11-29T01:16:37ZengAIMS PressMathematics in Engineering2640-35012023-10-015511910.3934/mine.2023089Kolmogorov variation: KAM with knobs (à la Kolmogorov)Marco Sansottera0Veronica Danesi11. Rocketloop GmbH, Hansaallee 154, 60320 Frankfurt, Germany2. Department of Mathematics, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00133 Rome, ItalyIn this paper we reconsider the original Kolmogorov normal form algorithm [26] with a variation on the handling of the frequencies. At difference with respect to the Kolmogorov approach, we do not keep the frequencies fixed along the normalization procedure. Besides, we select the frequencies of the final invariant torus and determine a posteriori the corresponding starting ones. In particular, we replace the classical translation step with a change of the frequencies. The algorithm is based on the original scheme of Kolmogorov, thus exploiting the fast convergence of the Newton-Kantorovich method.https://www.aimspress.com/article/doi/10.3934/mine.2023089?viewType=HTMLkolmogorov normal formperturbation theorykam theorem
spellingShingle Marco Sansottera
Veronica Danesi
Kolmogorov variation: KAM with knobs (à la Kolmogorov)
Mathematics in Engineering
kolmogorov normal form
perturbation theory
kam theorem
title Kolmogorov variation: KAM with knobs (à la Kolmogorov)
title_full Kolmogorov variation: KAM with knobs (à la Kolmogorov)
title_fullStr Kolmogorov variation: KAM with knobs (à la Kolmogorov)
title_full_unstemmed Kolmogorov variation: KAM with knobs (à la Kolmogorov)
title_short Kolmogorov variation: KAM with knobs (à la Kolmogorov)
title_sort kolmogorov variation kam with knobs a la kolmogorov
topic kolmogorov normal form
perturbation theory
kam theorem
url https://www.aimspress.com/article/doi/10.3934/mine.2023089?viewType=HTML
work_keys_str_mv AT marcosansottera kolmogorovvariationkamwithknobsalakolmogorov
AT veronicadanesi kolmogorovvariationkamwithknobsalakolmogorov