Transcriptome Differences in Normal Human Bronchial Epithelial Cells in Response to Influenza A pdmH1N1 or H7N9 Virus Infection

Avian influenza A (H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. The emergence of H7N9 virus infections is a serious public health threat. To identify virus–host interaction differences between the highly virulent H7N9 and pandemic influenza H1N1...

Full description

Bibliographic Details
Main Authors: Tzu-Hsuan Hsieh, Ya-Jhu Lin, Mei-Jen Hsioa, Hsin-Ju Wang, Lu-Ting Chen, Shu-Li Yang, Chung-Guei Huang
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/11/5/781
Description
Summary:Avian influenza A (H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. The emergence of H7N9 virus infections is a serious public health threat. To identify virus–host interaction differences between the highly virulent H7N9 and pandemic influenza H1N1 (pdmH1N1), RNA sequencing was performed of normal human bronchial epithelial (NHBE) cells infected with either virus. The transcriptomic analysis of host cellular responses to viral infection enables the identification of potential cellular factors related to infection. Significantly different gene expression patterns were found between pdmH1N1- and H7N9-infected NHBE cells. In addition, the H7N9 virus infection induced strong immune responses, while cellular repair mechanisms were inhibited. The differential expression of specific factors observed between avian H7N9 and pdmH1N1 influenza virus strains can account for variations in disease pathogenicity. These findings provide a framework for future studies examining the molecular mechanisms underlying the pathogenicity of avian H7N9 virus.
ISSN:2073-4409