Magnetized Dusty Black Holes and Wormholes

We consider the generalized Tolman solution of general relativity, describing the evolution of a spherical dust cloud in the presence of an external electric or magnetic field. The solution contains three arbitrary functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/Math...

Full description

Bibliographic Details
Main Authors: Kirill A. Bronnikov, Pavel E. Kashargin, Sergey V. Sushkov
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/11/419
_version_ 1797508277958868992
author Kirill A. Bronnikov
Pavel E. Kashargin
Sergey V. Sushkov
author_facet Kirill A. Bronnikov
Pavel E. Kashargin
Sergey V. Sushkov
author_sort Kirill A. Bronnikov
collection DOAJ
description We consider the generalized Tolman solution of general relativity, describing the evolution of a spherical dust cloud in the presence of an external electric or magnetic field. The solution contains three arbitrary functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>τ</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>R</i> is a radial coordinate in the comoving reference frame. The solution splits into three branches corresponding to hyperbolic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>), parabolic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and elliptic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>) types of motion. In such models, we study the possible existence of wormhole throats defined as spheres of minimum radius at a fixed time instant, and prove the existence of throats in the elliptic branch under certain conditions imposed on the arbitrary functions. It is further shown that the normal to a throat is a timelike vector (except for the instant of maximum expansion, when this vector is null), hence a throat is in general located in a T-region of space-time. Thus, if such a dust cloud is placed between two empty (Reissner–Nordström or Schwarzschild) space-time regions, the whole configuration is a black hole rather than a wormhole. However, dust clouds with throats can be inscribed into closed isotropic cosmological models filled with dust to form wormholes which exist for a finite period of time and experience expansion and contraction together with the corresponding cosmology. Explicit examples and numerical estimates are presented. The possible traversability of wormhole-like evolving dust layers is established by a numerical study of radial null geodesics.
first_indexed 2024-03-10T04:59:50Z
format Article
id doaj.art-130c01a5a5b04dc6a2040bf65b2d467c
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-10T04:59:50Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-130c01a5a5b04dc6a2040bf65b2d467c2023-11-23T01:50:21ZengMDPI AGUniverse2218-19972021-11-0171141910.3390/universe7110419Magnetized Dusty Black Holes and WormholesKirill A. Bronnikov0Pavel E. Kashargin1Sergey V. Sushkov2Center of Gravitation and Fundamental Metrology, VNIIMS, Ozyornaya Ul. 46, 119361 Moscow, RussiaInstitute of Physics, Kazan Federal University, Kremliovskaya St. 16a, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremliovskaya St. 16a, 420008 Kazan, RussiaWe consider the generalized Tolman solution of general relativity, describing the evolution of a spherical dust cloud in the presence of an external electric or magnetic field. The solution contains three arbitrary functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>τ</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <i>R</i> is a radial coordinate in the comoving reference frame. The solution splits into three branches corresponding to hyperbolic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>), parabolic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>) and elliptic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>) types of motion. In such models, we study the possible existence of wormhole throats defined as spheres of minimum radius at a fixed time instant, and prove the existence of throats in the elliptic branch under certain conditions imposed on the arbitrary functions. It is further shown that the normal to a throat is a timelike vector (except for the instant of maximum expansion, when this vector is null), hence a throat is in general located in a T-region of space-time. Thus, if such a dust cloud is placed between two empty (Reissner–Nordström or Schwarzschild) space-time regions, the whole configuration is a black hole rather than a wormhole. However, dust clouds with throats can be inscribed into closed isotropic cosmological models filled with dust to form wormholes which exist for a finite period of time and experience expansion and contraction together with the corresponding cosmology. Explicit examples and numerical estimates are presented. The possible traversability of wormhole-like evolving dust layers is established by a numerical study of radial null geodesics.https://www.mdpi.com/2218-1997/7/11/419wormholesblack holesdustlike mattercollapseTolman’s solutiongeneral relativity
spellingShingle Kirill A. Bronnikov
Pavel E. Kashargin
Sergey V. Sushkov
Magnetized Dusty Black Holes and Wormholes
Universe
wormholes
black holes
dustlike matter
collapse
Tolman’s solution
general relativity
title Magnetized Dusty Black Holes and Wormholes
title_full Magnetized Dusty Black Holes and Wormholes
title_fullStr Magnetized Dusty Black Holes and Wormholes
title_full_unstemmed Magnetized Dusty Black Holes and Wormholes
title_short Magnetized Dusty Black Holes and Wormholes
title_sort magnetized dusty black holes and wormholes
topic wormholes
black holes
dustlike matter
collapse
Tolman’s solution
general relativity
url https://www.mdpi.com/2218-1997/7/11/419
work_keys_str_mv AT kirillabronnikov magnetizeddustyblackholesandwormholes
AT pavelekashargin magnetizeddustyblackholesandwormholes
AT sergeyvsushkov magnetizeddustyblackholesandwormholes