Omega Ideals in Omega Rings and Systems of Linear Equations over Omega Fields

Omega rings (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-rings) (and other related structures) are la...

Full description

Bibliographic Details
Main Authors: Jorge Jimenez, María Luisa Serrano, Branimir Šešelja, Andreja Tepavčević
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/8/757
_version_ 1797585511108313088
author Jorge Jimenez
María Luisa Serrano
Branimir Šešelja
Andreja Tepavčević
author_facet Jorge Jimenez
María Luisa Serrano
Branimir Šešelja
Andreja Tepavčević
author_sort Jorge Jimenez
collection DOAJ
description Omega rings (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-rings) (and other related structures) are lattice-valued structures (with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> being the codomain lattice) defined on crisp algebras of the same type, with lattice-valued equality replacing the classical one. In this paper, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-ideals are introduced, and natural connections with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-congruences and homomorphisms are established. As an application, a framework of approximate solutions of systems of linear equations over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-fields is developed.
first_indexed 2024-03-11T00:07:08Z
format Article
id doaj.art-130d9f96d0f7481b9912c30b04818f09
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T00:07:08Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-130d9f96d0f7481b9912c30b04818f092023-11-19T00:14:47ZengMDPI AGAxioms2075-16802023-08-0112875710.3390/axioms12080757Omega Ideals in Omega Rings and Systems of Linear Equations over Omega FieldsJorge Jimenez0María Luisa Serrano1Branimir Šešelja2Andreja Tepavčević3Department of Mathematics, University of Oviedo, 33007 Oviedo, SpainDepartment of Mathematics, University of Oviedo, 33007 Oviedo, SpainDepartment of Mathematics and Informatics, University of Novi Sad, 21000 Novi Sad, SerbiaDepartment of Mathematics and Informatics, University of Novi Sad, 21000 Novi Sad, SerbiaOmega rings (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-rings) (and other related structures) are lattice-valued structures (with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula> being the codomain lattice) defined on crisp algebras of the same type, with lattice-valued equality replacing the classical one. In this paper, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-ideals are introduced, and natural connections with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-congruences and homomorphisms are established. As an application, a framework of approximate solutions of systems of linear equations over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>-fields is developed.https://www.mdpi.com/2075-1680/12/8/757fuzzy algebraomega ringfuzzy congruencefuzzy equalityideals in ringsomega fields
spellingShingle Jorge Jimenez
María Luisa Serrano
Branimir Šešelja
Andreja Tepavčević
Omega Ideals in Omega Rings and Systems of Linear Equations over Omega Fields
Axioms
fuzzy algebra
omega ring
fuzzy congruence
fuzzy equality
ideals in rings
omega fields
title Omega Ideals in Omega Rings and Systems of Linear Equations over Omega Fields
title_full Omega Ideals in Omega Rings and Systems of Linear Equations over Omega Fields
title_fullStr Omega Ideals in Omega Rings and Systems of Linear Equations over Omega Fields
title_full_unstemmed Omega Ideals in Omega Rings and Systems of Linear Equations over Omega Fields
title_short Omega Ideals in Omega Rings and Systems of Linear Equations over Omega Fields
title_sort omega ideals in omega rings and systems of linear equations over omega fields
topic fuzzy algebra
omega ring
fuzzy congruence
fuzzy equality
ideals in rings
omega fields
url https://www.mdpi.com/2075-1680/12/8/757
work_keys_str_mv AT jorgejimenez omegaidealsinomegaringsandsystemsoflinearequationsoveromegafields
AT marialuisaserrano omegaidealsinomegaringsandsystemsoflinearequationsoveromegafields
AT branimirseselja omegaidealsinomegaringsandsystemsoflinearequationsoveromegafields
AT andrejatepavcevic omegaidealsinomegaringsandsystemsoflinearequationsoveromegafields