Network modelling of fluid retention behaviour in unsaturated soils

The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE), suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore st...

Full description

Bibliographic Details
Main Authors: Athanasiadis Ignatios, Wheeler Simon J., Grassl Peter
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:E3S Web of Conferences
Online Access:http://dx.doi.org/10.1051/e3sconf/20160911016
Description
Summary:The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE), suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone.
ISSN:2267-1242