Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models

Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machin...

Full description

Bibliographic Details
Main Authors: Caroline Matara, Simpson Osano, Amir Okeyo Yusuf, Elisha Ochungo Aketch
Format: Article
Language:English
Published: D. G. Pylarinos 2024-02-01
Series:Engineering, Technology & Applied Science Research
Subjects:
Online Access:https://etasr.com/index.php/ETASR/article/view/6678
Description
Summary:Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machine learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree (ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R2 of 0.71. Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind speed emerged as the primary determinants in forecasting PM2.5 levels.
ISSN:2241-4487
1792-8036