Lipidomic study of cell lines reveals differences between breast cancer subtypes.
Breast cancer (BC) is the most prevalent type of cancer in women in western countries. BC mortality has not declined despite early detection by screening, indicating the need for better informed treatment decisions. Therefore, a novel noninvasive diagnostic tool for BC would give the opportunity of...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0231289 |
_version_ | 1823945535657082880 |
---|---|
author | Finnur Freyr Eiriksson Martha Kampp Nøhr Margarida Costa Sigridur Klara Bödvarsdottir Helga Margret Ögmundsdottir Margret Thorsteinsdottir |
author_facet | Finnur Freyr Eiriksson Martha Kampp Nøhr Margarida Costa Sigridur Klara Bödvarsdottir Helga Margret Ögmundsdottir Margret Thorsteinsdottir |
author_sort | Finnur Freyr Eiriksson |
collection | DOAJ |
description | Breast cancer (BC) is the most prevalent type of cancer in women in western countries. BC mortality has not declined despite early detection by screening, indicating the need for better informed treatment decisions. Therefore, a novel noninvasive diagnostic tool for BC would give the opportunity of subtype-specific treatment and improved prospects for the patients. Heterogeneity of BC tumor subtypes is reflected in the expression levels of enzymes in lipid metabolism. The aim of the study was to investigate whether the subtype defined by the transcriptome is reflected in the lipidome of BC cell lines. A liquid chromatography mass spectrometry (LC-MS) platform was applied to analyze the lipidome of six cell lines derived from human BC cell lines representing different BC subtypes. We identified an increased abundance of triacylglycerols (TG) ≥ C-48 with moderate or multiple unsaturation in fatty acyl chains and down-regulated ether-phosphatidylethanolamines (PE) (C-34 to C-38) in cell lines representing estrogen receptor and progesterone receptor positive tumor subtypes. In a cell line representing HER2-overexpressing tumor subtype an elevated expression of TG (≤ C-46), phosphatidylcholines (PC) and PE containing short-chained (≤ C-16) saturated or monounsaturated fatty acids were observed. Increased abundance of PC ≥ C-40 was found in cell lines of triple negative BC subtype. In addition, differences were detected in lipidomes within these previously defined subtypes. We conclude that subtypes defined by the transcriptome are indeed reflected in differences in the lipidome and, furthermore, potentially biologically relevant differences may exist within these defined subtypes. |
first_indexed | 2024-12-17T09:17:58Z |
format | Article |
id | doaj.art-133857543be14f8ea93b3611be86aae4 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-17T09:17:58Z |
publishDate | 2020-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-133857543be14f8ea93b3611be86aae42022-12-21T21:54:52ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01154e023128910.1371/journal.pone.0231289Lipidomic study of cell lines reveals differences between breast cancer subtypes.Finnur Freyr EirikssonMartha Kampp NøhrMargarida CostaSigridur Klara BödvarsdottirHelga Margret ÖgmundsdottirMargret ThorsteinsdottirBreast cancer (BC) is the most prevalent type of cancer in women in western countries. BC mortality has not declined despite early detection by screening, indicating the need for better informed treatment decisions. Therefore, a novel noninvasive diagnostic tool for BC would give the opportunity of subtype-specific treatment and improved prospects for the patients. Heterogeneity of BC tumor subtypes is reflected in the expression levels of enzymes in lipid metabolism. The aim of the study was to investigate whether the subtype defined by the transcriptome is reflected in the lipidome of BC cell lines. A liquid chromatography mass spectrometry (LC-MS) platform was applied to analyze the lipidome of six cell lines derived from human BC cell lines representing different BC subtypes. We identified an increased abundance of triacylglycerols (TG) ≥ C-48 with moderate or multiple unsaturation in fatty acyl chains and down-regulated ether-phosphatidylethanolamines (PE) (C-34 to C-38) in cell lines representing estrogen receptor and progesterone receptor positive tumor subtypes. In a cell line representing HER2-overexpressing tumor subtype an elevated expression of TG (≤ C-46), phosphatidylcholines (PC) and PE containing short-chained (≤ C-16) saturated or monounsaturated fatty acids were observed. Increased abundance of PC ≥ C-40 was found in cell lines of triple negative BC subtype. In addition, differences were detected in lipidomes within these previously defined subtypes. We conclude that subtypes defined by the transcriptome are indeed reflected in differences in the lipidome and, furthermore, potentially biologically relevant differences may exist within these defined subtypes.https://doi.org/10.1371/journal.pone.0231289 |
spellingShingle | Finnur Freyr Eiriksson Martha Kampp Nøhr Margarida Costa Sigridur Klara Bödvarsdottir Helga Margret Ögmundsdottir Margret Thorsteinsdottir Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLoS ONE |
title | Lipidomic study of cell lines reveals differences between breast cancer subtypes. |
title_full | Lipidomic study of cell lines reveals differences between breast cancer subtypes. |
title_fullStr | Lipidomic study of cell lines reveals differences between breast cancer subtypes. |
title_full_unstemmed | Lipidomic study of cell lines reveals differences between breast cancer subtypes. |
title_short | Lipidomic study of cell lines reveals differences between breast cancer subtypes. |
title_sort | lipidomic study of cell lines reveals differences between breast cancer subtypes |
url | https://doi.org/10.1371/journal.pone.0231289 |
work_keys_str_mv | AT finnurfreyreiriksson lipidomicstudyofcelllinesrevealsdifferencesbetweenbreastcancersubtypes AT marthakamppnøhr lipidomicstudyofcelllinesrevealsdifferencesbetweenbreastcancersubtypes AT margaridacosta lipidomicstudyofcelllinesrevealsdifferencesbetweenbreastcancersubtypes AT sigridurklarabodvarsdottir lipidomicstudyofcelllinesrevealsdifferencesbetweenbreastcancersubtypes AT helgamargretogmundsdottir lipidomicstudyofcelllinesrevealsdifferencesbetweenbreastcancersubtypes AT margretthorsteinsdottir lipidomicstudyofcelllinesrevealsdifferencesbetweenbreastcancersubtypes |