Accelerating the Finite-Element Method for Reaction-Diffusion Simulations on GPUs with CUDA

DNA nanotechnology offers a fine control over biochemistry by programming chemical reactions in DNA templates. Coupled to microfluidics, it has enabled DNA-based reaction-diffusion microsystems with advanced spatio-temporal dynamics such as traveling waves. The Finite Element Method (FEM) is a stand...

Full description

Bibliographic Details
Main Authors: Hedi Sellami, Leo Cazenille, Teruo Fujii, Masami Hagiya, Nathanael Aubert-Kato, Anthony J. Genot
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/9/881
Description
Summary:DNA nanotechnology offers a fine control over biochemistry by programming chemical reactions in DNA templates. Coupled to microfluidics, it has enabled DNA-based reaction-diffusion microsystems with advanced spatio-temporal dynamics such as traveling waves. The Finite Element Method (FEM) is a standard tool to simulate the physics of such systems where boundary conditions play a crucial role. However, a fine discretization in time and space is required for complex geometries (like sharp corners) and highly nonlinear chemistry. Graphical Processing Units (GPUs) are increasingly used to speed up scientific computing, but their application to accelerate simulations of reaction-diffusion in DNA nanotechnology has been little investigated. Here we study reaction-diffusion equations (a DNA-based predator-prey system) in a tortuous geometry (a maze), which was shown experimentally to generate subtle geometric effects. We solve the partial differential equations on a GPU, demonstrating a speedup of ∼100 over the same resolution on a 20 cores CPU.
ISSN:2072-666X