RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis

Summary: Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specificall...

Full description

Bibliographic Details
Main Authors: Yu Gao, Minjie Shen, Jose Carlos Gonzalez, Qiping Dong, Sudharsan Kannan, Johnson T. Hoang, Brian E. Eisinger, Jyotsna Pandey, Sahar Javadi, Qiang Chang, Daifeng Wang, Linda Overstreet-Wadiche, Xinyu Zhao
Format: Article
Language:English
Published: Elsevier 2020-08-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124720309827
Description
Summary:Summary: Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specifically within the adult-born hippocampal neurons, with significant impact on genes involved in neuronal maturation and human diseases. We identify the regulator of G protein signaling 6 (RGS6) as a key factor that mediates running impact on adult-born neurons. RGS6 overexpression mimics the positive effects of voluntary running on morphological and physiological maturation of adult new neurons and reduced sensitivity of adult-born neurons to the inhibitory effect of GABAB (γ-Aminobutyric acid B) receptor activation. Knocking down RGS6 abolishes running-enhanced neuronal maturation and hippocampal neurogenesis-dependent learning and anxiolytic effect. Our study provides a data resource showing genome-wide intrinsic molecular changes in adult-born hippocampal neurons that contribute to voluntary running-induced neurogenesis.
ISSN:2211-1247