Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs

We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40+1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.

Bibliographic Details
Main Authors: Borodin Oleg V., Ivanova Anna O.
Format: Article
Language:English
Published: University of Zielona Góra 2013-09-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1708
_version_ 1827840310784294912
author Borodin Oleg V.
Ivanova Anna O.
author_facet Borodin Oleg V.
Ivanova Anna O.
author_sort Borodin Oleg V.
collection DOAJ
description We prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40+1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.
first_indexed 2024-03-12T07:32:24Z
format Article
id doaj.art-1360e737390f48a8bf93c9374bd1e10e
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T07:32:24Z
publishDate 2013-09-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-1360e737390f48a8bf93c9374bd1e10e2023-09-02T21:43:05ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922013-09-0133475977010.7151/dmgt.1708Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar GraphsBorodin Oleg V.0Ivanova Anna O.1Institute of Mathematics Siberian Branch of the Russian Academy of SciencesInstitute of Mathematics of Ammosov North-Eastern Federal University Yakutsk, 677891, RussiaWe prove that every planar graph with maximum degree ∆ is strong edge (2∆−1)-colorable if its girth is at least 40+1. The bound 2∆−1 is reached at any graph that has two adjacent vertices of degree ∆.https://doi.org/10.7151/dmgt.1708planar graphedge coloring2-distance coloringstrong edgecoloring
spellingShingle Borodin Oleg V.
Ivanova Anna O.
Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
Discussiones Mathematicae Graph Theory
planar graph
edge coloring
2-distance coloring
strong edgecoloring
title Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
title_full Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
title_fullStr Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
title_full_unstemmed Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
title_short Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
title_sort precise upper bound for the strong edge chromatic number of sparse planar graphs
topic planar graph
edge coloring
2-distance coloring
strong edgecoloring
url https://doi.org/10.7151/dmgt.1708
work_keys_str_mv AT borodinolegv preciseupperboundforthestrongedgechromaticnumberofsparseplanargraphs
AT ivanovaannao preciseupperboundforthestrongedgechromaticnumberofsparseplanargraphs