Design Optimization of Improved Fractional-Order Cascaded Frequency Controllers for Electric Vehicles and Electrical Power Grids Utilizing Renewable Energy Sources

Recent developments in electrical power grids have witnessed high utilization levels of renewable energy sources (RESs) and increased trends that benefit the batteries of electric vehicles (EVs). However, modern electrical power grids cause increased concerns due to their continuously reduced inerti...

Full description

Bibliographic Details
Main Authors: Fayez F. M. El-Sousy, Mohammed H. Alqahtani, Ali S. Aljumah, Mokhtar Aly, Sulaiman Z. Almutairi, Emad A. Mohamed
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/8/603
Description
Summary:Recent developments in electrical power grids have witnessed high utilization levels of renewable energy sources (RESs) and increased trends that benefit the batteries of electric vehicles (EVs). However, modern electrical power grids cause increased concerns due to their continuously reduced inertia resulting from RES characteristics. Therefore, this paper proposes an improved fractional-order frequency controller with a design optimization methodology. The proposed controller is represented by two cascaded control loops using the one-plus-proportional derivative (1 + PD) in the outer loop and a fractional-order proportional integral derivative (FOPID) in the inner loop, which form the proposed improved 1 + PD/FOPID. The main superior performance characteristics of the proposed 1 + PD/FOPID fractional-order frequency controller over existing methods include a faster response time with minimized overshoot/undershoot peaks, an ability for mitigating both high- and low-frequency disturbances, and coordination of EV participation in regulating electrical power grid frequency. Moreover, simultaneous determination of the proposed fractional-order frequency controller parameters is proposed using the recent manta ray foraging optimization (MRFO) algorithm. Performance comparisons of the proposed 1 + PD/FOPID fractional-order frequency controller with existing PID, FOPID, and PD/FOPID controllers are presented in the paper. The results show an improved response, and the disturbance mitigation is also obtained using the proposed MRFO-based 1 + PD/FOPID control and design optimization methodology.
ISSN:2504-3110