Summary: | This work presents a novel approach for fabricating current collector-free three-dimensional (3D) anodes for Lithium-ion batteries (LIBs) based on MXene, a 2D material with excellent conductivity and lithium-ion intercalation properties. The 3D MXene-based anodes were fabricated through a simple and scalable printing process, eliminating the need for traditional current collectors such as copper foil. The performance of the 3D anodes was characterized in terms of electrochemical properties, including capacity assessment, cycling stability, and rate capability. The results showed that the printed anodes exhibited superior performance, highlighting the potential of this approach for the development of high-performance LIBs. The findings presented in this work have significant implications for the design and manufacturing of next-generation energy storage devices.
|