Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil
Perfluorinated compounds (PFCs), as an important class of new persistent organic pollutants, are widely distributed in the environment. Yet the effects of different types and concentrations of PFCs on soil microbial community in urban forest ecosystems are remain uncertain. Here, two typical PFCs, p...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-01-01
|
Series: | Ecotoxicology and Environmental Safety |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0147651322012982 |
_version_ | 1797961256276066304 |
---|---|
author | Wei Zheng Lei Hu Zekai Chen Jun Tang Yuliang Pan Wende Yan Xiaoyong Chen Yuanying Peng Lijun Chen |
author_facet | Wei Zheng Lei Hu Zekai Chen Jun Tang Yuliang Pan Wende Yan Xiaoyong Chen Yuanying Peng Lijun Chen |
author_sort | Wei Zheng |
collection | DOAJ |
description | Perfluorinated compounds (PFCs), as an important class of new persistent organic pollutants, are widely distributed in the environment. Yet the effects of different types and concentrations of PFCs on soil microbial community in urban forest ecosystems are remain uncertain. Here, two typical PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were selected to carry out a pot experiment in greenhouse with singly and joint treatment at different concentrations, to examine their effects on composition and diversity of soil microorganisms and availability of soil macronutrients by using high-throughput Illumina sequencing approach. The results showed both PFOA and PFOS application significantly increased soil NO3--N and NH4+-N content, but did not alter total phosphorus content, compared to the control check (CK) treatments. Total potassium content was reduced in PFOA treatments but increased in PFOS and PFOA×PFOS treatments. The most dominant bacterial phylum was Chloroflexi in low and medium PFCs concentrations and the CK treatments, but it was switched to Acidobacteria in high concentrations. No obvious change was detected for the composition of the dominant fungi community in PFCs treatments compared to the CK treatments. With the increase of PFCs concentrations, soil bacterial richness decreased but its diversity increased, whereas the richness and diversity of fungal community usually decreased. Redundancy analyses revealed that soil fungal community was more sensitive to PFCs pollutants than soil bacterial communities. Further data analysis revealed by structural equation model (SEM) that the PFCs exposed for 60 days indirectly affects the diversity and richness of soil bacteria and fungi by directly affecting NO3--N and NH4+-N content. The results suggested the concentration of PFCs pollutants played a primary role in determining the composition, richness and diversity of forest soil microbial communities. |
first_indexed | 2024-04-11T00:56:10Z |
format | Article |
id | doaj.art-13ae5b31b973402f89872a2f060f83e5 |
institution | Directory Open Access Journal |
issn | 0147-6513 |
language | English |
last_indexed | 2024-04-11T00:56:10Z |
publishDate | 2023-01-01 |
publisher | Elsevier |
record_format | Article |
series | Ecotoxicology and Environmental Safety |
spelling | doaj.art-13ae5b31b973402f89872a2f060f83e52023-01-05T04:30:49ZengElsevierEcotoxicology and Environmental Safety0147-65132023-01-01249114458Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soilWei Zheng0Lei Hu1Zekai Chen2Jun Tang3Yuliang Pan4Wende Yan5Xiaoyong Chen6Yuanying Peng7Lijun Chen8Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, ChinaFaculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, ChinaFaculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, ChinaFaculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, ChinaFaculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China; Corresponding author at: Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China.Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, ChinaCollege of Arts and Science, Governors State University, University Park, IL 60484, USANatural Sciences Division, College of DuPage, Glen Ellyn, IL 60137, USAFaculty of Forestry, Central South University of Forestry & Technology, Changsha 410004, China; Corresponding author.Perfluorinated compounds (PFCs), as an important class of new persistent organic pollutants, are widely distributed in the environment. Yet the effects of different types and concentrations of PFCs on soil microbial community in urban forest ecosystems are remain uncertain. Here, two typical PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were selected to carry out a pot experiment in greenhouse with singly and joint treatment at different concentrations, to examine their effects on composition and diversity of soil microorganisms and availability of soil macronutrients by using high-throughput Illumina sequencing approach. The results showed both PFOA and PFOS application significantly increased soil NO3--N and NH4+-N content, but did not alter total phosphorus content, compared to the control check (CK) treatments. Total potassium content was reduced in PFOA treatments but increased in PFOS and PFOA×PFOS treatments. The most dominant bacterial phylum was Chloroflexi in low and medium PFCs concentrations and the CK treatments, but it was switched to Acidobacteria in high concentrations. No obvious change was detected for the composition of the dominant fungi community in PFCs treatments compared to the CK treatments. With the increase of PFCs concentrations, soil bacterial richness decreased but its diversity increased, whereas the richness and diversity of fungal community usually decreased. Redundancy analyses revealed that soil fungal community was more sensitive to PFCs pollutants than soil bacterial communities. Further data analysis revealed by structural equation model (SEM) that the PFCs exposed for 60 days indirectly affects the diversity and richness of soil bacteria and fungi by directly affecting NO3--N and NH4+-N content. The results suggested the concentration of PFCs pollutants played a primary role in determining the composition, richness and diversity of forest soil microbial communities.http://www.sciencedirect.com/science/article/pii/S0147651322012982Perfluorinated compoundsBacterial and fungal communitiesPFOAPFOS |
spellingShingle | Wei Zheng Lei Hu Zekai Chen Jun Tang Yuliang Pan Wende Yan Xiaoyong Chen Yuanying Peng Lijun Chen Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil Ecotoxicology and Environmental Safety Perfluorinated compounds Bacterial and fungal communities PFOA PFOS |
title | Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil |
title_full | Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil |
title_fullStr | Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil |
title_full_unstemmed | Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil |
title_short | Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil |
title_sort | effects of perfluorinated compounds homologues on chemical property microbial composition richness and diversity of urban forest soil |
topic | Perfluorinated compounds Bacterial and fungal communities PFOA PFOS |
url | http://www.sciencedirect.com/science/article/pii/S0147651322012982 |
work_keys_str_mv | AT weizheng effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT leihu effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT zekaichen effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT juntang effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT yuliangpan effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT wendeyan effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT xiaoyongchen effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT yuanyingpeng effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil AT lijunchen effectsofperfluorinatedcompoundshomologuesonchemicalpropertymicrobialcompositionrichnessanddiversityofurbanforestsoil |