Fluoride removal from phosphogypsum: A study on pre-industrial scale and its mathematical analysis
This study discusses fluoride removal efficiency from phosphogypsum (PG) on a lab-scale experiment matrix designed by the Box-Behnken method. Temperature, solid/liquid ratio, and time were supposed to influence fluoride removal efficiency from PG by various salt solution media. Experiment matrices w...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Association of the Chemical Engineers of Serbia
2024-01-01
|
Series: | Chemical Industry and Chemical Engineering Quarterly |
Subjects: | |
Online Access: | https://doiserbia.nb.rs/img/doi/1451-9372/2024/1451-93722300009A.pdf |
Summary: | This study discusses fluoride removal efficiency from phosphogypsum (PG) on a lab-scale experiment matrix designed by the Box-Behnken method. Temperature, solid/liquid ratio, and time were supposed to influence fluoride removal efficiency from PG by various salt solution media. Experiment matrices were designed according to salt solution types: seawater, 5% NaCl, and 10% NaCl solutions. The factor-response analysis showed a direct proportionality between fluoride removal efficiency and temperature. The optimum fluoride removal conditions based on the experimental data obtained by the multi-variable design matrix were determined by the Design Expert v.12 software. The optimum temperature, time, and solid/liquid ratio were 80 °C, 3 h, and 0,174 for seawater. The software predicted a 73,31% fluoride removal efficiency at the optimum conditions, whereas the experimental value was 74,99%. Since the actual vs. predicted data show high consistency, results might also be useful when industrial-scale fluoride removal to a predetermined level is required prior to a particular use of PG. PG has a high potential as an alternative raw material, and fluoride removal might be important in recycling applications. This study provides a novel pre-industrial scale fluoride removal inventory, especially for the fertilizer and cement industry. |
---|---|
ISSN: | 1451-9372 2217-7434 |