Marked Neurospora crassa Strains for Competition Experiments and Bayesian Methods for Fitness Estimates

The filamentous fungus Neurospora crassa, a model microbial eukaryote, has a life cycle with many features that make it suitable for studying experimental evolution. However, it has lacked a general tool for estimating relative fitness of different strains in competition experiments. To remedy this...

Full description

Bibliographic Details
Main Authors: Ilkka Kronholm, Tereza Ormsby, Kevin J. McNaught, Eric U. Selker, Tarmo Ketola
Format: Article
Language:English
Published: Oxford University Press 2020-04-01
Series:G3: Genes, Genomes, Genetics
Subjects:
Online Access:http://g3journal.org/lookup/doi/10.1534/g3.119.400632
Description
Summary:The filamentous fungus Neurospora crassa, a model microbial eukaryote, has a life cycle with many features that make it suitable for studying experimental evolution. However, it has lacked a general tool for estimating relative fitness of different strains in competition experiments. To remedy this need, we constructed N. crassa strains that contain a modified csr-1 locus and developed an assay for detecting the proportion of the marked strain using a post PCR high resolution melting assay. DNA extraction from spore samples can be performed on 96-well plates, followed by a PCR step, which allows many samples to be processed with ease. Furthermore, we suggest a Bayesian approach for estimating relative fitness from competition experiments that takes into account the uncertainty in measured strain proportions. We show that there is a fitness effect of the mating type locus, as mating type mat a has a higher competitive fitness than mat A. The csr-1* marker also has a small fitness effect, but is still a suitable marker for competition experiments. As a proof of concept, we estimate the fitness effect of the qde-2 mutation, a gene in the RNA interference pathway, and show that its competitive fitness is lower than what would be expected from its mycelial growth rate alone.
ISSN:2160-1836