Poxvirus Cell Entry: How Many Proteins Does it Take?
For many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxviru...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2012-04-01
|
Series: | Viruses |
Subjects: | |
Online Access: | http://www.mdpi.com/1999-4915/4/5/688 |
_version_ | 1818357290823057408 |
---|---|
author | Bernard Moss |
author_facet | Bernard Moss |
author_sort | Bernard Moss |
collection | DOAJ |
description | For many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single membrane, and the extracellular enveloped virion (EV), which has an additional outer membrane that is disrupted prior to fusion. Four viral proteins associated with the MV membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell surface, whereas EV attachment proteins have not yet been identified. Entry can occur at the plasma membrane or in acidified endosomes following macropinocytosis and involves actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins are conserved in poxviruses making it likely that a common entry mechanism exists. Biochemical studies support a two-step process in which lipid mixing of viral and cellular membranes is followed by pore expansion and core penetration. |
first_indexed | 2024-12-13T20:10:46Z |
format | Article |
id | doaj.art-13c3b628d70248efb5c33f3142f6fe20 |
institution | Directory Open Access Journal |
issn | 1999-4915 |
language | English |
last_indexed | 2024-12-13T20:10:46Z |
publishDate | 2012-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Viruses |
spelling | doaj.art-13c3b628d70248efb5c33f3142f6fe202022-12-21T23:32:54ZengMDPI AGViruses1999-49152012-04-014568870710.3390/v4050688Poxvirus Cell Entry: How Many Proteins Does it Take?Bernard MossFor many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single membrane, and the extracellular enveloped virion (EV), which has an additional outer membrane that is disrupted prior to fusion. Four viral proteins associated with the MV membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell surface, whereas EV attachment proteins have not yet been identified. Entry can occur at the plasma membrane or in acidified endosomes following macropinocytosis and involves actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins are conserved in poxviruses making it likely that a common entry mechanism exists. Biochemical studies support a two-step process in which lipid mixing of viral and cellular membranes is followed by pore expansion and core penetration.http://www.mdpi.com/1999-4915/4/5/688vaccinia virus entryviral membrane fusionendocytosismacropinocytosistransmembrane proteins |
spellingShingle | Bernard Moss Poxvirus Cell Entry: How Many Proteins Does it Take? Viruses vaccinia virus entry viral membrane fusion endocytosis macropinocytosis transmembrane proteins |
title | Poxvirus Cell Entry: How Many Proteins Does it Take? |
title_full | Poxvirus Cell Entry: How Many Proteins Does it Take? |
title_fullStr | Poxvirus Cell Entry: How Many Proteins Does it Take? |
title_full_unstemmed | Poxvirus Cell Entry: How Many Proteins Does it Take? |
title_short | Poxvirus Cell Entry: How Many Proteins Does it Take? |
title_sort | poxvirus cell entry how many proteins does it take |
topic | vaccinia virus entry viral membrane fusion endocytosis macropinocytosis transmembrane proteins |
url | http://www.mdpi.com/1999-4915/4/5/688 |
work_keys_str_mv | AT bernardmoss poxviruscellentryhowmanyproteinsdoesittake |