Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer
Abstract Tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2021-08-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-96844-0 |
_version_ | 1818428338505515008 |
---|---|
author | Jean S. Fain Axelle Loriot Anna Diacofotaki Aurélie Van Tongelen Charles De Smet |
author_facet | Jean S. Fain Axelle Loriot Anna Diacofotaki Aurélie Van Tongelen Charles De Smet |
author_sort | Jean S. Fain |
collection | DOAJ |
description | Abstract Tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark deposited during transcriptional elongation and known to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of regional DNA hypermethylation. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo/hypermethylation, and some of these included tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations. |
first_indexed | 2024-12-14T15:00:02Z |
format | Article |
id | doaj.art-13c815e52ba34a6ab5ae1ab31236669e |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-12-14T15:00:02Z |
publishDate | 2021-08-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-13c815e52ba34a6ab5ae1ab31236669e2022-12-21T22:56:52ZengNature PortfolioScientific Reports2045-23222021-08-0111111410.1038/s41598-021-96844-0Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancerJean S. Fain0Axelle Loriot1Anna Diacofotaki2Aurélie Van Tongelen3Charles De Smet4Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de LouvainGroup of Genetics and Epigenetics, de Duve Institute, Université Catholique de LouvainGroup of Genetics and Epigenetics, de Duve Institute, Université Catholique de LouvainGroup of Genetics and Epigenetics, de Duve Institute, Université Catholique de LouvainGroup of Genetics and Epigenetics, de Duve Institute, Université Catholique de LouvainAbstract Tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark deposited during transcriptional elongation and known to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of regional DNA hypermethylation. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo/hypermethylation, and some of these included tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.https://doi.org/10.1038/s41598-021-96844-0 |
spellingShingle | Jean S. Fain Axelle Loriot Anna Diacofotaki Aurélie Van Tongelen Charles De Smet Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer Scientific Reports |
title | Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer |
title_full | Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer |
title_fullStr | Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer |
title_full_unstemmed | Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer |
title_short | Transcriptional overlap links DNA hypomethylation with DNA hypermethylation at adjacent promoters in cancer |
title_sort | transcriptional overlap links dna hypomethylation with dna hypermethylation at adjacent promoters in cancer |
url | https://doi.org/10.1038/s41598-021-96844-0 |
work_keys_str_mv | AT jeansfain transcriptionaloverlaplinksdnahypomethylationwithdnahypermethylationatadjacentpromotersincancer AT axelleloriot transcriptionaloverlaplinksdnahypomethylationwithdnahypermethylationatadjacentpromotersincancer AT annadiacofotaki transcriptionaloverlaplinksdnahypomethylationwithdnahypermethylationatadjacentpromotersincancer AT aurelievantongelen transcriptionaloverlaplinksdnahypomethylationwithdnahypermethylationatadjacentpromotersincancer AT charlesdesmet transcriptionaloverlaplinksdnahypomethylationwithdnahypermethylationatadjacentpromotersincancer |