Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems
We study the existence and multiplicity of positive solutions for a class of nth-order singular nonlocal boundary value problemsu(n)(t)+a(t)f(t,u)=0, t∈(0,1), u(0)=0, u'(0)=0, …,u(n−2)(0)=0, αu(η)=u(1), where 0<η<1,  0<αηn−1 <...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-04-01
|
Series: | Boundary Value Problems |
Online Access: | http://dx.doi.org/10.1155/2007/74517 |
_version_ | 1819073380531306496 |
---|---|
author | Xin'an Hao Lishan Liu Yonghong Wu |
author_facet | Xin'an Hao Lishan Liu Yonghong Wu |
author_sort | Xin'an Hao |
collection | DOAJ |
description | We study the existence and multiplicity of positive solutions for a class of nth-order singular nonlocal boundary value problemsu(n)(t)+a(t)f(t,u)=0, t∈(0,1), u(0)=0, u'(0)=0, …,u(n−2)(0)=0, αu(η)=u(1), where 0<η<1,  0<αηn−1 <1. The singularity may appear at t=0 and/or t=1. The Krasnosel'skii-Guo theorem on cone expansion and compression is used in this study. The main results improve and generalize the existing results. |
first_indexed | 2024-12-21T17:52:42Z |
format | Article |
id | doaj.art-13cd1d83e137434fb40c6b9d34d99bcb |
institution | Directory Open Access Journal |
issn | 1687-2762 1687-2770 |
language | English |
last_indexed | 2024-12-21T17:52:42Z |
publishDate | 2007-04-01 |
publisher | SpringerOpen |
record_format | Article |
series | Boundary Value Problems |
spelling | doaj.art-13cd1d83e137434fb40c6b9d34d99bcb2022-12-21T18:55:18ZengSpringerOpenBoundary Value Problems1687-27621687-27702007-04-01200710.1155/2007/74517Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value ProblemsXin'an HaoLishan LiuYonghong WuWe study the existence and multiplicity of positive solutions for a class of nth-order singular nonlocal boundary value problemsu(n)(t)+a(t)f(t,u)=0, t∈(0,1), u(0)=0, u'(0)=0, …,u(n−2)(0)=0, αu(η)=u(1), where 0<η<1,  0<αηn−1 <1. The singularity may appear at t=0 and/or t=1. The Krasnosel'skii-Guo theorem on cone expansion and compression is used in this study. The main results improve and generalize the existing results.http://dx.doi.org/10.1155/2007/74517 |
spellingShingle | Xin'an Hao Lishan Liu Yonghong Wu Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems Boundary Value Problems |
title | Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems |
title_full | Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems |
title_fullStr | Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems |
title_full_unstemmed | Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems |
title_short | Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems |
title_sort | positive solutions for nonlinear nth order singular nonlocal boundary value problems |
url | http://dx.doi.org/10.1155/2007/74517 |
work_keys_str_mv | AT xin39anhao positivesolutionsfornonlinearnthordersingularnonlocalboundaryvalueproblems AT lishanliu positivesolutionsfornonlinearnthordersingularnonlocalboundaryvalueproblems AT yonghongwu positivesolutionsfornonlinearnthordersingularnonlocalboundaryvalueproblems |