Molten Salts Approach of Poly(vinyl alcohol)-Derived Bimetallic Nickel–Iron Sheets Supported on Porous Carbon Nanosheet as an Effective and Durable Electrocatalyst for Methanol Oxidation

The preparation of metallic nanostructures supported on porous carbon materials that are facile, green, efficient, and low-cost is desirable to reduce the cost of electrocatalysts, as well as reduce environmental pollutants. In this study, a series of bimetallic nickel–iron sheets supported on porou...

Full description

Bibliographic Details
Main Authors: Badr M. Thamer, Meera Moydeen Abdul Hameed, Mohamed H. El-Newehy
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/9/3/238
Description
Summary:The preparation of metallic nanostructures supported on porous carbon materials that are facile, green, efficient, and low-cost is desirable to reduce the cost of electrocatalysts, as well as reduce environmental pollutants. In this study, a series of bimetallic nickel–iron sheets supported on porous carbon nanosheet (NiFe@PCNs) electrocatalysts were synthesized by molten salt synthesis without using any organic solvent or surfactant through controlled metal precursors. The as-prepared NiFe@PCNs were characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction, and photoelectron spectroscopy (XRD and XPS). The TEM results indicated the growth of NiFe sheets on porous carbon nanosheets. The XRD analysis confirmed that the Ni<sub>1−x</sub>Fe<sub>x</sub> alloy had a face-centered polycrystalline (fcc) structure with particle sizes ranging from 15.5 to 30.6 nm. The electrochemical tests showed that the catalytic activity and stability were highly dependent on the iron content. The electrocatalytic activity of catalysts for methanol oxidation demonstrated a nonlinear relationship with the iron ratio. The catalyst doped with 10% iron showed a higher activity compared to the pure nickel catalyst. The maximum current density of Ni<sub>0.9</sub>Fe<sub>0.1</sub>@PCNs (Ni/Fe ratio 9:1) was 190 mA/cm<sup>2</sup> at 1.0 M of methanol. In addition to the high electroactivity, the Ni<sub>0.9</sub>Fe<sub>0.1</sub>@PCNs showed great improvement in stability over 1000 s at 0.5 V with a retained activity of 97%. This method can be used to prepare various bimetallic sheets supported on porous carbon nanosheet electrocatalysts.
ISSN:2310-2861